4. Tìm a để 2a là số nguyên tố
5. Tìm các ước nguyên tố của 120;450;900
1) Tìm a để 2a là số nguyên tố
2) Tìm các ước nguyên tố của 120; 450; 900
3) Không tính hãy so sánh; A = 2019 . 2020 và B = 2000. 2009
TỪ BÂY GIỜ ĐẾN 20:20 AI XONG TRƯỚC THÌ MÌNH TICK CHO
Tìm a,b để a46b chia hết cho 2;3;5;9
b) Phân tích số 120 ra thừa số nguyên tố rồi tìm các ước nguyên tố của nó
Giải chi tiết nha bạn. mik thanhk
1. Tìm số nguyên tố a biết rằng 2a + 1 là lập phương của một số nguyên tố
2.Tìm các số nguyên tố p để 13p + 1 là lập phương của một số tự nhiên
1.Với a = 2 ta có 2a + 1 = 5 không thích hợp
Với a ≠ 2 do a là số nguyên tố nên a lẽ
Vậy 2a + 1 là lập phương của một số lẽ nghĩa là
Từ đó k là ước của a. Do k là số nguyên tố nên k = 1 hoặc k = a
-Nếu k = 1 thì 2a + 1 = (2.1 + 1)3 suy ra a = 13 thớch hợp
- Nếu a = k từ a = a(4a2 + 6a + 3) do a là nguyên tố nên suy ra
1 = 4a2 + 6a + 3 không có số nguyên tố a nào thoả món phương trỡnh này Vì vế phải luụn lớn hơn 1
Vậy a = 13
2.Giả sử
13 và p là các số nguyên tố , mà n – 1 > 1 và n2 + n + 1 > 1
Nên n – 1 = 13 hoặc n – 1 = p
- Với n – 1 =13 thì n = 14 khi đó 13p = n3 – 1 = 2743 suy ta p = 211 là số nguyên tố
- Với n – 1 = p thi n2 + n + 1 = 13 suy ra n = 3 . Khi đó p = 2 là số nguyên tố
Vậy p = 2, p = 211 thì 13p + 1 là lập phương của một số tự nhiên
1/Tìm các số nguyên tố trong các số sau:129;137;259;283;557;824;159;327;809;973
2/Phân tích các số sau ra thừa số nguyên tố:32;127;275;312;3060;24255;62475
3/Phân tích số 120 ra thừa số nguyên tố.Hãy tìm các ước của 120
fffffffffffffffffffffffffffffffffffffffffffff
what the fuck
đag học ,tự nhiên vào phá
kêu rằng :f f f f f f ...
a/ Tìm số nguyên tố a biết rằng 2a +1 là lập phương của một số nguyên tố
b/ Tìm các số nguyên tố p để 13p +1 là lập phương của một số tự nhiên
a/ Tìm số nguyên tố a biết rằng 2a +1 là lập phương của một số nguyên tố
b/ Tìm các số nguyên tố p để 13p +1 là lập phương của một số tự nhiên
xin lỗi tớ nhầm
Đặt 2p + 1 = n³ với n là số tự nhiên
Cách giải: phân tích ra thừa số
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó.
Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
bài 1
phân tích các số sau 36,52,134,391,1463 ra thừa số nguyên tố
a) tìm các ước nguyên tố của mỗi số trên
b) tìm các ước nguyên mỗi số
bài 2
a) viết các số chỉ có ước nguyên tố là 7
b) viết bốn số tự nhiên mà mỗi số có đúng ba ước nguyên tố
1. Trong các số sau số nào là hợp số, số nào là số nguyên tố
36; 37; 91; 92; 97; 2022; 5757
2. Tìm a để
a) 17𝑎̅ là hợp số; 23𝑎̅ là số nguyên tố
3. Các số sau là số nguyên tố hay hợp số
a) a = 1.3.5.7 + 20
b) 147.247.347 -13
4. Tìm số ước của số 240
5. Tìm số nguyên tố p để 4p = 11 là số nguyên tố nhỏ hơn 30
6. Tìm số nguyên tố p sao cho p + 8 và p + 16 là số nguyên tố
Cho p là một số nguyên tố. Tìm p để tổng các ước nguyên dương của \(p^4\) là một số chính phương
Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)
\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)
\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)
Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)
\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)
\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)