phan tich cac da thuc sau thanh nhan tu:
(y^2+Y)^2 -9y^2 - 9y+20
(X+3)*(x+6)*(x+9)*(x+12)+81
phan tich da thuc thanh nhan tu
a, x^2.y-x^3-9y+9x
b, x^2(x-1)+16(1-x)
\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
Phan tich da thuc thanh nhan tu
P=x^2 - 6xy +9y^2
\(P=x^2-6xy+9y^2=\left(x-3y\right)^2\)
(Áp dụng 7 hằng đẳng thức đáng nhớ)
phan tich da thuc thanh nhan tu
c/ 3x-9xy-9y2+6y-1
d/ x4+x2y2+y4
c/ 3x-9xy-9y2+6y-1
=3x.(1-3y)-(1-6y+9y2)
=3x.(1-3y)-(1-3y)2
=(1-3y)[3x-(1-3y)]
=(1-3y)(3x-1+3y)
d/ x4+x2y2+y4
=x4+2x2y2+y4-x2y2
=(x2+y2)2-x2y2
=(x2-xy+y2)(x2+xy+y2)
Phan tich da thuc thanh nhan tu:
P=x^2-6xy+9y^2
Cac ban ghi loi giai ro rang từng bước cho mình nha
\(x^2-6xy+9y^2=x^2-2.\left[x.\left(3y\right)\right]+\left(3y\right)^2\)
\(=\left(x-3y\right)^2\)
phan tich cac da thuc thanh nhan tu
-x - y^2 + x^2 -y
x^2-y^2-(x+y)
(x-y).(x+y)-(x-y).1
(x-y).(x+y-1)
=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y-1)
\(-x-y^2+x^2-y\)
\(=x^2-y^2-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
3.7: Su dung cac hang dang thuc de phan tich cac da thuc sau thanh nhan tu:
a) -y2 + 1/9
b) x4 - 256
c) 9 (x - 3)2 - 4 (x + 1)2
d) 25x2 - 1/81 x2y2
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
c) \(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=\left(3x-9\right)^2-\left(2x+2\right)^2\)
\(=\left(3x-9+2x+2\right)\left(3x-9-2x-2\right)\)
\(=\left(5x-7\right)\left(x-11\right)\)
\(a,=\left(\dfrac{1}{3}-y\right)\left(\dfrac{1}{3}+y\right)\\ b,=\left(x^2-16\right)\left(x^2+16\right)\\ =\left(x-4\right)\left(x+4\right)\left(x^2+16\right)\\ c,=\left[3\left(x-3\right)-2\left(x+1\right)\right]\left[3\left(x-3\right)+2\left(x+1\right)\right]\\ =\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)\\ =\left(x-11\right)\left(5x-7\right)\\ d,=\left(5x-\dfrac{1}{9}xy\right)\left(5x+\dfrac{1}{9}xy\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
phan tich da thuc sau thanh nhan tu :
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(49.\left(y-4\right)^2-9y^2-36y-36\)
\(=7^2\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right).\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right).\left(4y-34\right)\)
\(=4.\left(5y-11\right).\left(2y-17\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\) \(4\left(2y-17\right)\left(5y-11\right)\)
Phan tich cac da thuc thanh nhan tu:
x3- 2x2 - x + 2
x2 + 6x - y2 + 9
x^3-2x^2-x+2=x^2(x-2)-(x-2)=(x^2-1)(x-2)=(x-1)(x+1)(x-2)
a)(x3- x) - (2x2 - 2)
= x (x2 - 1) - 2 (x2 - 1)
= (x - 2) (x2-1)
a) \(x^3-2x^2-x+2=\left(x^3-x\right)+\left(-2x^2+2\right)\)
\(=x\left(x^2-1\right)-2\left(x^2-1\right)=\left(x-2\right)\left(x^2-1\right)=\left(x-2\right)\left(x+1\right)\left(x-1\right)\)
b) \(x^2+6x-y^2+9=\left(x^2+6x+9\right)-y^2\)
\(\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
phan tich thanh cac nhan tu da thuc
x^2-25+y+2xy