giải phương trình:
\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
giải phương trình
\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
giúp mình với
\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
\(\Leftrightarrow2x^2-6x+7=2\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2-2x+2}=a>0\\\sqrt{x^2-4x+5}=b>0\end{cases}}\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x^2-2x+2}=\sqrt{x^2-4x+5}\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
\(\Leftrightarrow x^2-3x+\frac{7}{2}-\frac{5}{4}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}-\frac{5}{4}\)
\(\Leftrightarrow\frac{4x^2-12x+9}{4}=\frac{\left(x^2-2x+2\right)\left(x^2-4x+5\right)-\frac{25}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}\)
\(\Leftrightarrow\frac{\left(2x-3\right)^2}{4}-\frac{x^4-6x^3+15x^2-18x+10-\frac{25}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}=0\)
\(\Leftrightarrow\frac{\left(2x-3\right)^2}{4}-\frac{\frac{16x^4-96x^3+240x^2-288x+135}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}=0\)
\(\Leftrightarrow\frac{\left(2x-3\right)^2}{4}-\frac{\frac{\left(2x-3\right)^2\left(4x^2-12x+15\right)}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}=0\)
\(\Leftrightarrow\left(2x-3\right)^2\left(\frac{1}{4}-\frac{\frac{4x^2-12x+15}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}\right)=0\)
\(\Rightarrow x=\frac{3}{2}\)
Bài làm của mk cho ai khùng thôi, bn tham khảo cx dc :v
Giải phương trình :
\(\left(\frac{8}{3}\right)^{x^2-x+1}\left(\frac{3}{5}\right)^{2x^2-3x+2}\left(\frac{5}{7}\right)^{3x^2-4x+3}\left(\frac{7}{2}\right)^{4x^2-5x+4}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
Bài 1:
ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$
$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$
Coi đây là PT bậc 2 ẩn $x$
$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:
$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:
$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Nhìn không đủ chán rồi không dám động vào
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
giải phương trình \(\sqrt{x^2-3x+5}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
Giải các phương trình sau: (hệ phương trình)
1.\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
2.\(\sqrt{3-4x}+\sqrt{4x+1}=-16x^2-8x+1\)
3. \(\sqrt{x^2-2x+5}+\sqrt{x+1}=2\)
4. \(\left(-4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
5. \(\sqrt{-4x-1}+\sqrt{4x^2+8x+3}=-4x^2-4x\)
6. \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
7. \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\)
Ai làm được 4 bài hoặc nhiều hơn mik sẽ tick nha :)
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !