Cho tam giác ABC có góc A= 45 độ, kẻ đướng cao AD, BE, CF.
TÍNH EF
Cho tam giác ABC cân tại A có góc A nhỏ hơn 90 độ, phân giác AD ( D thuộc BC). Kẻ đường cao BE cắt AD tại H
a) Chứng minh CH vuông góc với AB
b) Gọi F là giao điểm của CH và AB. Chứng minh AD là trung trực của đoạn EF
c)Kẻ EI vuông góc với HC tại I; FJ vuông góc với HB tại J. Chứng minh các đường thẳng EI, FJ và AD cùng đi qua một điểm O
d) Chứng minh AC - AF> OF - OC
Các bạn ơi giúp mình với nhé!
a: Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD là đường cao ứng với cạnh BC
Xét ΔABC có
AD là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
AD cắt BE tại H
Do đó: H là trực tâm của ΔBAC
Suy ra: CH\(\perp\)AB
cho tam giác ABC có góc A=90 độ, AB<AC. Kẻ đường cao AH vuông góc với BC. Kẻ AD là phân giác góc HAC. Kẻ BE là đường phân giác góc ABC. CMR BE vuông góc với AD
cac ban oi giup minh nhe
Goi F la giao diem cua BE va AH, I la giao diem cua BE va AD
ta co: goc ABC+ goc ACB=90 ( tam giac ABC vuong tai A)
goc HAC+ goc ACB=90 ( tam giac AHC vuong tai H)
===> goc ABC= goc HAC
ta co : goc HAD=1/2 goc HAC ( AD la tia p/g goc HAC)
goc FBH=1/2 goc ABC ( BE la tia p/g goc ABC )
goc ABC= goc HAC ( cmt)
--> goc HAD= goc FBH
ta co: goc BFH+ goc FBH =90 ( tam giac FBH vuong tai H)
goc FBH= goc HAD ( cmt)
goc BFH= goc AFI ( 2 goc doi dinh)
===> goc HAD+ goc AFI =90 hay goc FAI+ goc AFI=90
xet tam giac AFI ta co: goc AFI+ gic FAI+ goc AIF=180 ( tong 3 goc trong tamgiac )
ma goc AFI+ goc FAI =90 ( cmt )
nen 90+ goc AIF =180
--> goc AIF =180-90=90
--> AI vuong goc FI hay BE vuong goc AD tai I
Chi tam giác ABC nhọn, đg cao BE,CF cắt nhau tại tại H
a)CM ;AE*AC = AF*AB VÀ TAM GIÁC AEF ĐỒNG DẠNG VS TAM GIÁC ABC
b)Qua B kẻ đg thẳng song song vs CF cắt AH ở M ,AH CÁT BC Ở D CM BD^2=AD*DM
c)CHO GOÁC ACB BẰNG 45 ĐỘ ,KẺ AK VUÔNG GÓC VỚI EF TẠI K, TÍNH TỈ SỐ DIỆN TÍCH CỦA TAM GIÁC AFH VÀ TAM GIÁC AKE
d)cm AB*AC=BE*CF+AE*AF
a. Xét △ AFC và △ AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}=90^0\)
⇒ △AFC đồng dạng với △ AEB(g.g)
⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)
⇒ \(AB.AF=AE.AC\)
\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)
Xét △ AEF và △ ABC có :
\(\widehat{BAC}\) chung
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
⇒△ AEF đồng dạng với △ ABC (c.g.c)
Mấy câu kia bạn tự làm nốt đi nhá.
Trong tam giác ABC có góc ABC=70 độ,lấy D trên AB;F trên AC sao cho AD=AF.Lấy E trên BC sao cho CE=CF.Tính góc DEF?
Cho tam giác ABC cân tại A. Có đường cao AD. Từ D kẻ DE vuông góc AB, DF vuông góc AC. Trên tia đối của tia DE lấy điểm M sao cho DE=DM. Cm
BE=CF
AD là trung trực của EF
tam giác EFM vuông
BE song song CM
Cho tam giác ABC cân tại A. Có đường cao AD. Từ D kẻ DeD kẻ DE vuông góc với AB DF vuông góc với AC.Trên tia đối của DE kẻ DM sao cho DE=DM Chứng Minh
:a. BE= CF
b. AD là trun g trực của EF
c.Tam giác EFM vuông
d. BE// CM
cho tam giác ABC có AB = 15cm , AC = 20cm , BC = 25cm
a, chứng minh tam giác ABC vuông tại A . tính độ dài đướng cao AH
b, đường phân giác của góc A cắt BC tại D . từ kẻ DE và DF lần lượt vuông góc với AB vầ ÁC ( E thuộc AB , F thuộc AC ) . tứ giác AEDF là hình gì . vì sao . tính diện tích tứ giác AEDF .
c, chứng minh rằng : EF*EF + BC*BC = EC*EC + BF*BF
( độ dài và diện tích làm tròn đến số thập phan thứ ba , góc làm tròn đến phút )
cho tam giác ABC, kẻ đường cao AH và phân giác BE. Biết góc ABE = 45 độ. Tính góc EHC
Cho tam giác ABC có 3 góc nhon (AB<AC) .Các đường cao AD,BE,CF cắt nhau tại H a) C'm:tam giác AEB đồng dạng với tam giác AFC từ đó suy ra AF*AB=AE*AC
b)C'm góc AEF=góc ABC
c)kẻ DM vuông góc AB tại M. Qua M kẻ đường thẳng song song với EF cắt AC tại N C'm DN vuông AC
d)gọi I là trung điểm của HC .C'm tam giác AFC đồng dạng với tam giác FHB và FA*FB=FI^2-EI^2
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
cho tam giác abc. Kẻ đường cao AH và phân giác BE. Biết góc aeb= 45 độ. tính góc ehc