Những câu hỏi liên quan
TK
Xem chi tiết
PV
25 tháng 6 2017 lúc 21:30

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

Bình luận (0)
TK
25 tháng 6 2017 lúc 21:35

hey you, còn câu b,c?

Bình luận (0)
LH
25 tháng 6 2017 lúc 21:36

ở đây có ai thích sơn tùng không ?

Bình luận (0)
NU
Xem chi tiết
NU
17 tháng 9 2017 lúc 10:31

CÁC CẬU ƠI GIÚP MIK VS!!!!!!

Bình luận (0)
PO
Xem chi tiết
AH
30 tháng 9 2021 lúc 17:39

Lời giải:

BĐT cần cm tương đương với:
$2(a^4+b^4+c^4)\geq ab^3+bc^3+ca^3+a^3b+b^3c+c^3a$

$\Leftrightarrow (a^4+b^4-a^3b-ab^3)+(b^4+c^4-b^3c-bc^3)+(c^4+a^4-ca^3-c^3a)\geq 0$

$\Leftrightarrow (a-b)^2(a^2+ab+b^2)+(b-c)^2(b^2+bc+c^2)+(c-a)^2(c^2+ca+a^2)\geq 0$

Điều này luôn đúng do:

$(a-b)^2\geq 0; a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0$ với mọi $a,b\in\mathbb{R}$ và tương tự với 2 đa thức còn lại)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$ 

Bình luận (0)
H24
30 tháng 9 2021 lúc 20:21

Do bđt đối xứng nên ta giả sử: \(a\ge b\ge c\)

Áp dụng Chebyshev cho hai dãy đơn điệu tăng (a;b;c) và(a^3;b^3;c^3):

\(a^4+b^4+c^4=a.a^3+b.b^3+c.^3\ge\dfrac{1}{3}\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

Bình luận (0)
NN
Xem chi tiết
TL
Xem chi tiết
H24
11 tháng 4 2020 lúc 7:01

Bài 1 : 

Ta có : P =  a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}

                = a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}

                = a . ( a - 3 -a - 3 - a + 2 )

               = a . ( - a - 8 ) = -8a -a2 

        : Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]

              = a + a + 3 - a - 2 - a - 2

             = -1 

Ta thấy -1> -8a - a2 => Q > P

Bài 2 : 

Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b 

<=> a - b + c = a - b + c = a + c - b 

do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm) 

Bài 3:

a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d ) 

<=> a - b + c - d      = a + c - b - d 

<=> a - a + c - c      - b + b - d + d  = 0

<=> 0 = 0 => VP = VT ( đpcm) 

b) a - b - ( c- d ) = ( a + d ) - ( b + c ) 

<=> a - b - c + d = a + d - b  -c 

<=> a - a - b + b - c + c + d -d = 0

<=> 0 =0 => VP = VT ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
H24
Xem chi tiết
PQ
22 tháng 8 2018 lúc 11:00

c, Ta có : a+b+c=0 ⇒ c=-(a+b)

⇒ a3+b3+c3= a3+b3-(a+b)3= x3+y3-(x3+3x2y+3xy2+y3)= x3+y3-x3-3x2y-3xy2-y3= -3x2y-3xy2= -3xy(x+y)= 3xyz(đpcm)

Bình luận (0)
DD
22 tháng 8 2018 lúc 12:22

Câu a : Ta có :

\(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\)

Câu b : Khai triển VT ta có :

\(VT=\left(a+b+c\right)^3-a^3-b^3-c^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Luôn đúng vì \(a+b+c=0\)

Bình luận (0)
LS
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết
NL
18 tháng 9 2021 lúc 17:23

a.

\(a+b+c\ge3\sqrt[3]{abc}=6\) \(\Rightarrow2\left(a+b+c\right)\ge12\Rightarrow-12\ge-2\left(a+b+c\right)\)

Ta có:

\(a^2+b^2+c^2=a^2+4+b^2+4+c^2+4-12\ge4a+4b+4c-2\left(a+b+c\right)=2\left(a+b+c\right)\)

b.

\(a^3+b^3+c^3=\dfrac{1}{2}\left(a^3+a^3+8\right)+\dfrac{1}{2}\left(b^3+b^3+8\right)+\dfrac{1}{2}\left(c^3+c^3+8\right)-12\)

\(\ge3a^2+3b^2+3c^2-12\ge3a^2+3b^2+3c^2-2\left(a+b+c\right)\ge3a^2+3b^2+3c^2-\left(a^2+b^2+c^2\right)=...\)

Bình luận (0)