\(5^2.3^5:\left(2^3.\dfrac{1}{16}\right)\)
thực hiện phép tính
a)\(\left(\dfrac{9}{25}-2,18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b)\(\dfrac{3}{8}.19\dfrac{1}{3}-\dfrac{3}{8}.33\dfrac{1}{3}\)
c)\(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
d)\(\dfrac{2^{12}.3^5-4^6.81}{2^2.3^6+8^4.3^5}\)
e)\(4\left(-\dfrac{1}{2}\right)^2-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)
g)\(\sqrt{\dfrac{4}{81}}:\sqrt{\dfrac{25}{81}}-1\dfrac{2}{5}\)
thực hiên phép tính :
a, \(\left(3^2\right)^2-\left(2^3\right)^2-\left(-5^2\right)^2\)
b, \(2^3+3.\left(-\dfrac{1}{2}\right)^0-\left(\dfrac{1}{2}\right)^2.4+\left(\left(-2\right)^2:\dfrac{1}{2}\right):8\)
c, \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
d, \(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(a, \)\(\left(3^2\right)^2-\left(2^3\right)^2-\left(-5^2\right)^2=9^2-8^2-10^2\)
= \(81-64-100\)
\(=-83\)
\(b,\)\(2^3+3.\left(-\dfrac{1}{2}\right)^0-\left(\dfrac{1}{2}\right)^2.4+\left(\left(-2\right)^2:\dfrac{1}{2}\right):8=8+3.1-\dfrac{1}{4}.4+\left(4:\dfrac{1}{2}\right):8\) \(=8+3-1+8:8\)
\(=8+3-1+1\)
\(=11\)
Thuc hien phep tinh;
a/ \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
b/ \(\left(\dfrac{1}{25}+\dfrac{1}{5}+1\right):\left(\dfrac{1}{25}-\dfrac{1}{5}-1\right)\)
c/ \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}\)+ \(\dfrac{0,6-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-0,16-\dfrac{4}{125}-\dfrac{4}{625}}\)
d/ \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)
c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
=1/4+3/4
=1
tính giá trị của biểu thức : \(\dfrac{2.1+1}{\left(1^2+1\right)^2}+\dfrac{2.2+1}{\left(2^2+2\right)^2}+\dfrac{2.3+1}{\left(3^2+3\right)^2}+...+\dfrac{2.2015+1}{\left(4^2+4\right)^2}+\dfrac{2.2016+1}{\left(5^2+5\right)^2}\)
\(A=\dfrac{\left(17\dfrac{1}{4}-4\dfrac{3}{16}-13\dfrac{5}{6}\right).\left(\dfrac{-4}{7}\right)+6\dfrac{3}{4}}{\left(5\dfrac{2}{7}-\dfrac{16}{3}\right):\left(6\dfrac{2}{3}-4\dfrac{1}{2}\right)}\)
\(A=\dfrac{\left(17+\dfrac{1}{4}-4-\dfrac{3}{16}-13-\dfrac{5}{6}\right)\cdot\left(-\dfrac{4}{7}\right)+\dfrac{27}{4}}{\left(5+\dfrac{2}{7}-5-\dfrac{1}{3}\right):\left(6+\dfrac{2}{3}-4-\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{37}{84}+\dfrac{27}{4}}{-\dfrac{1}{21}:\dfrac{13}{6}}=\dfrac{-1963}{6}\)
1) Tìm x biết:
\(\left(1-\dfrac{3}{10}-x\right):\left(\dfrac{19}{10}-1-\dfrac{2}{5}\right)+\dfrac{4}{5}=1\)
2) Tính nhanh
a)\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
b)\(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
Tính:
a) S=1.2+2.3+3.4+...+99.100
b) B=\(\dfrac{49^{24}.125^{17}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
c) C=\(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}\right).3^5+\left(\dfrac{1}{3^5}+\dfrac{1}{3^6}+\dfrac{1}{3^7}+\dfrac{1}{3^8}\right).3^9+...+\left(\dfrac{1}{3^{97}}+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\right).3^{101}\)
d) D= \(3-3^2+3^3-3^4+...+3^{2017}-3^{2018}\)
a) S = 1.2 + 2.3 + 3.4 + ... + 99.100
S có thể được viết lại thành:
S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)
= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98
= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)
Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:
S = n(n+1)(2n+1)/6
Với n = 99, ta có:
S = 99.100.199/6 = 331650
Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:
S = n(n+1)/2
Với n = 98, ta có:
S = 98.99/2 = 4851
Do đó, S = 331650 - 4851 = 326799
b) B = 4924.12517.28−530.749.45529.162.748
B có thể được viết lại thành:
B = (4924.12517.28) / (530.749.45529.162.748)
B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)
B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529
B = 108 / 45529
c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101
C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101
C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)
C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)
C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)
d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018
D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^
Tính:
a) A= \(\left(\dfrac{5}{6}-\dfrac{4}{5}\right).1\dfrac{1}{5}+\dfrac{3}{16}:\left(\dfrac{-1}{2}\right)^3\)
b) B= \(\dfrac{4}{17}.\left(7\dfrac{3}{4}-6\dfrac{1}{3}\right)+\left(5\dfrac{3}{4}-6.95\right):\left(-1\dfrac{3}{5}\right)\)
A = (\(\dfrac{5}{6}\) - \(\dfrac{4}{5}\)) . 1\(\dfrac{1}{5}\) + \(\dfrac{3}{16}\) : (\(\dfrac{-1}{2}\))3
A = \(\dfrac{1}{30}\) . \(\dfrac{6}{5}\) + \(\dfrac{3}{16}\) : \(\dfrac{-1}{8}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{3}{16}\) . \(\dfrac{-8}{1}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{-3}{2}\)
A = \(\dfrac{-73}{50}\)
B = \(\dfrac{4}{17}\) . (7\(\dfrac{3}{4}\) - 6\(\dfrac{1}{3}\)) + (5\(\dfrac{3}{4}\) - 6.95) : (-1\(\dfrac{3}{5}\))
B = \(\dfrac{4}{17}\) . \(\dfrac{17}{12}\) + (\(\dfrac{23}{4}\) - \(\dfrac{139}{20}\)) : \(\dfrac{-8}{5}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{-6}{5}\) . \(\dfrac{-5}{8}\)
B = \(\dfrac{13}{12}\)
1, rút gọn
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+....+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{2n+1}{n^2\left(n^2+2n+1\right)}\)
\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)
\(=1-\dfrac{1}{n^2+2n+1}\)
\(=\dfrac{n^2+2n}{n^2+2n+1}=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)
Xét thừa số tổng quát:
\(\dfrac{k}{\left(\dfrac{k-1}{2}.\dfrac{k+1}{2}\right)^2}\)\(=\dfrac{k}{\left(\dfrac{\left(k-1\right)\left(k+1\right)}{4}\right)^2}=\dfrac{k}{\left(\dfrac{\left(k-1\right)\left(k+1\right)}{4}\right)^2}\)
\(=\dfrac{k}{\dfrac{\left[\left(k-1\right)\left(k+1\right)\right]^2}{16}}=\dfrac{k}{\dfrac{\left(k^2-1\right)^2}{16}}=\dfrac{16k}{\left(k^2-1\right)^2}\)
Thay \(k=3;5;....2n+1\) ta được:
\(\dfrac{16.3}{\left(3^2-1\right)^2}+\dfrac{16.5}{\left(5^2-1\right)^2}+....+\dfrac{16.n}{\left(n^2-1\right)^2}\)
\(=16.\left(\dfrac{3}{\left(3^2-1\right)^2}+\dfrac{5}{\left(5^2-1\right)^2}+...+\dfrac{n}{\left(n^2-1\right)^2}\right)\)
\(=16.\left(\dfrac{3}{\left[\left(3-1\right)\left(3+1\right)\right]^2}+\dfrac{5}{\left[\left(5-1\right)\left(5+1\right)\right]^2}+...+\dfrac{n}{\left[\left(n-1\right)\left(n+1\right)\right]^2}\right)\)
\(=16.\left(\dfrac{3}{4.16}+\dfrac{5}{16.36}+...+\dfrac{n}{\left(n-1\right)^2.\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{12}{4.16}+\dfrac{20}{16.36}+...+\dfrac{4n}{\left(n-1\right)^2.\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{1}{4}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{36}+...+\dfrac{1}{\left(n-1\right)^2}-\dfrac{1}{\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{\left(n+1\right)^2}{4\left(n+1\right)^2}-\dfrac{4}{4\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{\left(n+1\right)^2-4}{4\left(n+1\right)^2}\right)=\dfrac{4\left(n+1\right)^2-16}{4\left(n+1\right)^2}\)
\(=\dfrac{4\left[\left(n+1\right)^2-4\right]}{4\left(n+1\right)^2}=\dfrac{\left(n+1\right)^2-4}{\left(n+1\right)^2}\)
Chúc bạn học tốt!!!
rút gọn phân thức:\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+\dfrac{7}{\left(3.4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\dfrac{3}{\left(1\cdot2\right)^2}+\dfrac{5}{\left(2\cdot3\right)^2}+\dfrac{7}{\left(3\cdot4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+\dfrac{7}{9\cdot16}+...+\dfrac{2n+1}{n^2\cdot\left(n^2+2n+1\right)}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)
\(A=1-\dfrac{1}{n^2+2n+1}\)
\(A=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)