giải phương trình sau : \(\sqrt{43-x}=x-1\)
giải những phương trình sau:
1. \(\sqrt{x^2+1}=\sqrt{5}\)
2. \(\sqrt{2x-1}=\sqrt{3}\)
3. \(\sqrt{43-x}=x-1\)
4. \(x-\sqrt{4x-3}=2\)
5. \(\dfrac{\sqrt{x}+1}{\sqrt{x+3}}=\dfrac{1}{2}\)
1) \(\sqrt{x^2+1}=\sqrt{5}\)
\(\Leftrightarrow x^2+1=5\)
\(\Leftrightarrow x^2=5-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=2^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=3+1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=\dfrac{4}{2}\)
\(\Leftrightarrow x=2\left(tm\right)\)
3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))
\(\Leftrightarrow43-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1=43-x\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))
\(\Leftrightarrow\sqrt{4x-3}=x-2\)
\(\Leftrightarrow4x-3=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+4=4x-3\)
\(\Leftrightarrow x^2-8x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1^2\)
\(\Leftrightarrow x=1\left(tm\right)\)
1)
\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy PT có nghiệm `x=2` hoặc `x=-2`
2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
Vậy PT có nghiệm `x=2`
3)
\(ĐKXĐ:x\le43\)
PT trở thành:
\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm `x=-6` hoặc `x=7`
4)
ĐKXĐ: \(x\ge\dfrac{3}{4}\)
PT trở thành:
\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)
5)
ĐKXĐ: \(x\ge0\)
PT trở thành:
\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
Khi đó:
(1)\(\Leftrightarrow3t^2+8t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)
Vậy PT vô nghiệm.
Bài 1:
$\sqrt{x^2+1}=\sqrt{5}$
$\Leftrightarrow x^2+1=5$
$\Leftrightarrow x^2-4=0$
$\Leftrightarrow (x-2)(x+2)=0$
$\Leftrightarrow x-2=0$ hoặc $x+2=0$
$\Leftrightarrow x=\pm 2$ (đều tm)
2. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow 2x-1=3$
$\Leftrightarrow 2x=4$
$\Leftrightarrow x=2$ (tm)
3. ĐKXĐ: $x\leq 43$
PT \(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ 43-x=(x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-42=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x+6)(x-7)=0\end{matrix}\right.\)
$\Rightarrow x=7$ (tm)
Giải phương trình: (chú ý điều kiện)
\(\sqrt{43-x}=x-1\).
\(\sqrt{43-x}=x-1\left(đk:x\le43\right)\)
\(\Leftrightarrow\left|43-x\right|=\left(x-1\right)^2\)
\(\Leftrightarrow43-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Delta=\left(-1\right)^2-4.\left(-42\right)=169>0\)
Do \(\Delta\) > 0 nên pt có 2 nghiệm phân biện:
\(x_1=\dfrac{1+\sqrt{169}}{2}=7\left(TM\right)\)
\(x_2=\dfrac{1-\sqrt{169}}{2}=-6\left(TM\right)\)
\(ĐK:x\le43\)
\(\sqrt{43-x}=x-1\)
\(\Leftrightarrow\left(\sqrt{43-x}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow43-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Delta=\left(-1\right)^2-4.\left(-42\right)=1+168=169>0\)
\(\rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1+\sqrt{169}}{2}=7\left(tm\right)\\x_2=\dfrac{1-\sqrt{169}}{2}=-6\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{7;-6\right\}\)
Có em nhé, cho anh thêm:
\(đk:x\ge-1\) vì căn luôn lớn hơn 0
Giải phương trình:
\(\sqrt{43-x}=x-1\)
Bg (x thuộc Z đc không ?)
\(\sqrt{43-x}=x-1\)
=> 43 - x = (x - 1)2
=> 43 - x = x2 - 2x + 1
=> 43 = x2 - 2x + 1 + x
=> 42 = x2 - 2x + x
=> 42 = x2 - (2x - x)
=> 42 = x2 - x
=> 42 = x.(x - 1)
=> 7.6 = -6.(-7) = x.(x - 1)
Vậy x = 7 hoặc x = -6
Nhầm rồi, em xin lỗi ạ:
Kết quả là 7 thôi ạ,
Vì khi rút gọn x.(x - 1) thì phải dương
Giải phương trình sau:
\(\sqrt{x}+\sqrt{x+1}=1+\sqrt{x\left(x+1\right)}\)
ĐK
\(x\ge0\) và \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\Rightarrow x\ge0\)
Bình phương 2 vế PT
\(x+x+1+2\sqrt{x\left(x+1\right)}=1+x\left(x+1\right)+2\sqrt{x\left(x+1\right)}\)
\(\Leftrightarrow2x+1=1+x^2+x\)
\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) Thỏa mãn điều kiện \(x\ge0\)
Giải phương trình sau:
\(6\sqrt{1-x}-x=5\sqrt{1-\sqrt{1-x}}\)
\(ĐK:x\le1\)
Đặt \(\sqrt{1-x}=t\ge0\Leftrightarrow x=1-t^2\)
\(PT\Leftrightarrow6t-\left(1-t^2\right)=5\sqrt{1-t}\\ \Leftrightarrow t^2-\left(1-t\right)+5t-5\sqrt{1-t}=0\\ \Leftrightarrow\left(t-\sqrt{1-t}\right)\left(t+\sqrt{1-t}+5\right)=0\\ \Leftrightarrow t-\sqrt{1-t}=0\left(t+\sqrt{1-t}+5>0\right)\\ \Leftrightarrow t=\sqrt{1-t}\\ \Leftrightarrow t^2=1-t\\ \Leftrightarrow t=\dfrac{\sqrt{5}-1}{2}\Leftrightarrow1-x=\dfrac{3-\sqrt{5}}{2}\\ \Leftrightarrow x=\dfrac{-1\pm\sqrt{5}}{2}\left(tm\right)\)
giải phương trình sau:
\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
2\(\sqrt{x+2+\sqrt{x+1}}\) - \(\sqrt{x+1}\) = 4; Đk \(x\ge\) -1
2\(\sqrt{\left(\sqrt{x+1}\right)^2+2\sqrt{x+1}+1}\) - \(\sqrt{x+1}\) = 4
2\(\sqrt{\left(\sqrt{x+1}+1\right)^2}\) - \(\sqrt{x+1}\) = 4
2(\(\sqrt{x+1}\) + 1) - \(\sqrt{x+1}\) = 4
2\(\sqrt{x+1}\) + 2 - \(\sqrt{x+1}\) = 4
\(\sqrt{x+1}\) = 4 - 2
\(\sqrt{x+1}\) = 2
\(x+1\) = 4
\(x\) = 4 - 1
\(x\) = 3
\(...\Rightarrow2\sqrt[]{x+1+2\sqrt[]{x+1+1}}-\sqrt[]{x+1}=4\left(x\ge-1\right)\)
\(\Rightarrow2\sqrt[]{\left(\sqrt[]{x+1}+1\right)^2}-\sqrt[]{x+1}=4\)
\(\Rightarrow2|\sqrt[]{x+1}+1|-\sqrt[]{x+1}=4\left(1\right)\)
Nếu \(\sqrt[]{x+1}+1\ge0\Rightarrow x\ge-1\)
\(\left(1\right)\Rightarrow2\sqrt[]{x+1}+1-\sqrt[]{x+1}=4\)
\(\Rightarrow\sqrt[]{x+1}=3\Rightarrow x+1=9\Rightarrow x=8\)
Nếu \(\sqrt[]{x+1}+1\le0\Rightarrow x\in\varnothing\)
Vậy \(x=8\)
Giải phương trình sau:
\(x^2-x+2\sqrt{x^3+1}=2\sqrt{x+1}\)
\(ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow b^2-1+2ab=2a\\ \Leftrightarrow2ab-2a+b^2-1=0\\ \Leftrightarrow2a\left(b-1\right)+\left(b-1\right)\left(b+1\right)=0\\ \Leftrightarrow\left(2a+b+1\right)\left(b-1\right)=0\\ \Leftrightarrow b-1=0\left(2a+b+1>0\right)\\ \Leftrightarrow b=1\\ \Leftrightarrow x^2-x+1=1\\ \Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
giải phương trình sau:
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Đk: `1 <=x <=7`.
Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.
Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.
`<=> b^2 + 2a = 2b + ab.`
`<=> b(b-2) = a(b-2)`
`<=> (b-a)(b-2) = 0`
`<=> a =b` hoặc `b = 2.`
`@ a = b => 7 - x = x - 1`
`<=> 8 = 2x <=> x = 4`.
`@ b = 2 => sqrt(x-1) = 2`
`<=> x - 1 = 4`
`<=> x = 5`.
Vậy `x = 4` hoặc `x = 5`.
\(\text{ĐKXĐ:}1\le x\le7\)
PT đã cho tương đương với:
\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)
Giải phương trình sau: \(\left(1-\sqrt{1-x}\right)\sqrt[3]{2-x}=x\)
ĐKXĐ: \(x\le1\)
+) Xét \(x=0\) thỏa mãn.
+) Xét \(x\ne0\):
Nhân cả 2 vế của phương trình với \(\left(1+\sqrt{1-x}\right)\) ta được:
\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)
Đặt \(\sqrt{1-x}=a\left(a\ge0\right)\), khi đó \(2-x=a^2+1\)
\(pt\Leftrightarrow\sqrt[3]{a^2+1}=1+a\)
\(\Leftrightarrow a^2+1=\left(a+1\right)^3=a^3+3a^2+3a+1\)
\(\Leftrightarrow a^3+2a^2+3a=0\)
\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(C\right)\\\left(a+1\right)^2+2=0\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{1-x}=0\)
\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy tập nghiệm của phương trình là \(x=\left\{0;1\right\}\)
Lại bị lỗi công thức :((
Nhân cả hai vế của phương trình với \(1+\sqrt{1-x}\) ta được:
\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)