Những câu hỏi liên quan
PA
Xem chi tiết
NT
29 tháng 9 2015 lúc 22:17

cho S = 1+3+32+ 33 + 3+ .......+ 399

Tổng S có tổng cộng 100 số hạng

S = 1+3+32+ 33 + 3+ .......+ 399 

= (1+3) +(32+ 33) + (3+35) .......(388+ 399 )  có 50 nhóm

= 4 + 32.(1+3)+34(1+3)+........+388(1+3)

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

b)

= (1+3 + 32+ 33) + (3+35+36+37) .......(386+387+388+ 399 )  có 100:4 = 25 nhóm

=  (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33

=  40+ 34.40 .......386.40

= 40 ( 1 +34+ 38+....+386) chia hết cho 40

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

Bình luận (0)
VD
Xem chi tiết
H24
3 tháng 10 2018 lúc 12:09

Bạn nhóm từng nhóm 4 số là được , đặt nhân tử chung 1+3+3^2+3^3 là ra

Bình luận (0)
H24
3 tháng 10 2018 lúc 12:15

3S = 3 + 32 + 33 + ... + 399 + 3100

3S - S = (399 - 399) + (398 - 398) + ... + (32 - 32) + (3 - 3) + (3100 - 1)

2S = 3100 - 1

\(S=\dfrac{3^{100}-1}{2}\)

Ta có: \(3^4\equiv1\left(mod80\right)\)

\(\Rightarrow\left(3^4\right)^{25}=3^{100}\equiv1\left(mod80\right)\)

\(\Rightarrow3^{100}-1\equiv0\left(mod80\right)\Rightarrow3^{100}-1⋮80\)

\(\Rightarrow\dfrac{3^{100}-1}{2}⋮40\)

Bình luận (0)
PT
Xem chi tiết
H24
25 tháng 10 2017 lúc 11:04

A = 1 + 3^1 + 3^2 + ... + 3^99

3A = 3 + 3^2+ 3^3 + ... + 3^100

3A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )

3A = 3 ( 1 + 3 ) + 3^3 ( 1 + 3 )  + ... + 3^99 ( 1 + 3 )

3A = 3 . 4 + 3^3 . 4 + ... + 3^99 . 4

3A = 4 . ( 3 + 3^3 + 3^99 ) \(⋮\)4

Bình luận (0)
LK
18 tháng 6 2020 lúc 9:43

help mình!!!!!plz

https://olm.vn/hoi-dap/detail/258202696527.html

https://olm.vn/hoi-dap/detail/258180737788.html

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
OO
Xem chi tiết
MT
8 tháng 7 2015 lúc 6:46

S= 5+5^2+5^3+...........+5^99+5^100

=(5+52)+(53+54)+....+(599+5100)2

=1.(5+52)+(5.52+52.52)+...+(598.5+592.52)

=1.(5+52)+52.(5+52)+...+598.(5+52)

=1.30+52.30+...+598.30

=30.(1+52+...+598)

=>S chia het cho 30

Bình luận (0)
LH
Xem chi tiết
CH
16 tháng 11 2016 lúc 16:40

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

Bình luận (0)
NH
Xem chi tiết