TÌM GTLN
A=-3x2-7x+6
Tìm đa thức A biết ( 4 x 2 - 7 x + 1 ) - A = ( 3 x 2 - 7 x - 1 )
A. 7 x 2 + 2
B. x 2 - 14 x + 2
C. x 2 + 2
D. x 2 - 2
Ta có: A = (4x2 - 7x + 1) - (3x2 - 7x - 1) = x2 + 2. Chọn C
Tìm x:
x.(x+7)=3x2+7x-5
=>\(x^2\)+ \(7x\)=3\(x^2\)+\(7x\)-5
=>\(-2x^2\)+5=0
=>2\(x^2\)-5=0
=>2\(x^2\)=5
=>\(x^2\)=\(\dfrac{5}{2}\)
=>\(x\)=-\(\sqrt{\dfrac{5}{2}}\)
=>\(x\)=+\(\sqrt{\dfrac{5}{2}}\)
Tìm hệ số của mỗi đa thức sau
a) f (x) = 3x2 + 5x3 - 7x - 9
b) g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5
a) f (x) = 3x2 + 5x3 - 7x - 9
Hệ số cao nhất là: 5
Hệ số tự do là: 9
b) g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5
g(x) = ( 8x2 - 3x2) + ( 8-5) + ( -2x3 + 2x3) -9x
g(x) = 5x2 + 3 -9x
Hệ số cao nhất là: 5
Hệ số tự do là: 3
a) f (x) = 3x2 + 5x3 - 7x - 9
Hệ số cao nhất là: 5
Hệ số tự do là: 9
b) g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5
g(x) = ( 8x2 - 3x2) + ( 8-5) + ( -2x3 + 2x3) -9x
g(x) = 5x2 + 3 -9x
Hệ số cao nhất là: 5
Hệ số tự do là: 3
Cho phương trình 3x2 + 7x + 4 = 0.
Tìm nghiệm x2.
Theo định lí Vi-et ta có:
x1.x2 = c/a = 4/3 ⇒ x2 = 4/3:(-1) = -4/3
Bài 2 Tìm nghiệm của các đa thức sau:
a) (x2 – 9)(x + l); b) x2 + 4x – 5;
c) x2+ 9x + 20; d) x2 – x – 20;
e) 2x2 +7x + 6; f) 3x2 + x – 4.
tìm GTNN hoặc GTLN
A=|2x+4,5|+|x-2,7|
giúp mình với
Tìm GTNN
A= 2a2+b2-2ab=10a+42
Tìm GTLN
A= -x2-y2+2x-6x+9
2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)
\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Tìm GTLN
A=6x-x^2+3
B=2x-6y-x^2-y^2-2
Bài 3: Tìm GTLN
a, \(A=4-x^2+2x\)
b, \(B=4x-x^2\)
a)Ta có:
\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)
\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)
Vậy MaxA=-3 khi x=1
b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2
Bài 3: Tìm GTLN
a) Ta có: \(A=4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
Vậy: GTLN của biểu thức \(A=4-x^2+2x\) là 5 khi x=1
b) Ta có: \(B=4x-x^2\)
\(=-\left(x^2-4x\right)\)
\(=-\left(x^2-4x+4-4\right)\)
\(=-\left(x-2\right)^2+4\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: GTLN của biểu thức \(B=4x-x^2\) là 4 khi x=2
Tìm gTLNA=\(-x^4+2x^2+4x+2002\)