H24

Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 10 2017 lúc 15:29

Ta có: A = (4x2 - 7x + 1) - (3x2 - 7x - 1) = x2 + 2. Chọn C

Bình luận (0)
KV
Xem chi tiết
PL
12 tháng 8 2023 lúc 20:22

=>\(x^2\)\(7x\)=3\(x^2\)+\(7x\)-5

=>\(-2x^2\)+5=0

=>2\(x^2\)-5=0

=>2\(x^2\)=5

=>\(x^2\)=\(\dfrac{5}{2}\)

=>\(x\)=-\(\sqrt{\dfrac{5}{2}}\)

=>\(x\)=+\(\sqrt{\dfrac{5}{2}}\)

Bình luận (0)
H24
Xem chi tiết
H24
12 tháng 4 2022 lúc 12:44

a)  f (x) = 3x2 + 5x3 - 7x - 9

Hệ số cao nhất là: 5

Hệ số tự do là: 9

 

b)  g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5

g(x) = ( 8x2 - 3x2) + ( 8-5) + ( -2x+ 2x3) -9x

g(x) = 5x2 + 3 -9x

Hệ số cao nhất là: 5

Hệ số tự do là: 3

 

Bình luận (0)
HV
12 tháng 4 2022 lúc 12:46

a)  f (x) = 3x2 + 5x3 - 7x - 9

Hệ số cao nhất là: 5

Hệ số tự do là: 9

 

b)  g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5

g(x) = ( 8x2 - 3x2) + ( 8-5) + ( -2x+ 2x3) -9x

g(x) = 5x2 + 3 -9x

Hệ số cao nhất là: 5

Hệ số tự do là: 3

 

Bình luận (4)
PB
Xem chi tiết
CT
30 tháng 7 2017 lúc 15:55

Theo định lí Vi-et ta có:

x1.x2 = c/a = 4/3 ⇒ x2 = 4/3:(-1) = -4/3

 

Bình luận (0)
DD
Xem chi tiết
H24
12 tháng 8 2021 lúc 11:16

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

Bình luận (1)
Xem chi tiết
LH
Xem chi tiết
LL
21 tháng 9 2021 lúc 19:56

2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)

\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Bình luận (1)
NA
Xem chi tiết
TG
16 tháng 8 2021 lúc 9:04

undefined

Bình luận (1)
TN
Xem chi tiết
TV
6 tháng 1 2021 lúc 21:04

a)Ta có:

\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)

\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)

Vậy MaxA=-3 khi x=1

b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2

Bình luận (3)
NT
6 tháng 1 2021 lúc 23:22

Bài 3: Tìm GTLN

a) Ta có: \(A=4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2+5\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

Vậy: GTLN của biểu thức \(A=4-x^2+2x\) là 5 khi x=1

b) Ta có: \(B=4x-x^2\)

\(=-\left(x^2-4x\right)\)

\(=-\left(x^2-4x+4-4\right)\)

\(=-\left(x-2\right)^2+4\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+4\le4\forall x\)

Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: GTLN của biểu thức \(B=4x-x^2\) là 4 khi x=2

Bình luận (0)
TA
Xem chi tiết