Từ \(6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) rút gọn
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
RÚT GỌN BIỂU THỨC
A= \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\)\(\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
B= \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\)\(\left(\sqrt{6}+11\right)\)
\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)
\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(A=2^2-\left(\sqrt{5}\right)^2\)
\(A=4-5\)
\(A=-1\)
____
\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(B=6-121\)
\(B=-115\)
rút gọn A)\(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5-3}\right)^2}}\)
B) \(\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3+1}\right)^2}}}\)
C) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(c,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
\(=\sqrt{4+5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{29}\)
Rút gọn biểu thức sau:
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
Rút gọn
C = 21(\(\sqrt{2+\sqrt{3}}\) -\(\sqrt{6-2\sqrt{5}}\))2-6(\(\sqrt{2-\sqrt{3}}\) +\(\sqrt{\left(3+\sqrt{5}\right)^2}\))
Rút gọn biểu thức
A= \(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{3}\)
B=\(\sqrt{6+2\sqrt{5}}\)-\(\sqrt{6-2\sqrt{5}}\)
a: A=2-căn 3+căn 3=2
b: B=căn 5+1-căn 5+1=2
* Rút gọn biểu thức
a. \(\left(2\sqrt{125}-3\sqrt{5}-\sqrt{180}\right):\left(-\sqrt{5}\right)+\sqrt{8}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
d.\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}\right)\)
a) \(\dfrac{2\sqrt{125}-3\sqrt{5}-\sqrt{180}}{-\sqrt{5}}+\sqrt{8}=\dfrac{2\sqrt{25.5}-3\sqrt{5}-\sqrt{36.5}}{-\sqrt{5}}+\sqrt{8}\)
\(=\dfrac{10\sqrt{5}-3\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=\dfrac{\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=2\sqrt{2}-1\)
b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}\)
\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}=2\sqrt{2}+\sqrt{3}\)
c) \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}=\sqrt{16.3}-2\sqrt{9.\dfrac{1}{3}}+\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}\)
\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}=1+\sqrt{3}\)
d) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
Rút gọn: (Giải chi tiết từng bước)
5) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
6) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
`a, (2 sqrt 3 + sqrt 5)sqrt 3 - sqrt 60`
`= 2 sqrt 3 . sqrt 3 + sqrt 5 . sqrt 3 - sqrt(4 . 15)`
`= 2 . 3 + sqrt 15 - 2 sqrt 15`.
`= 6 - sqrt 15`.
`b, (5 sqrt 2 + 2 sqrt 5)sqrt 5 - sqrt250`
`= 5 sqrt 2 . sqrt 5 + 2 sqrt 5 . sqrt 5 - sqrt(25.10)`
`= 5 sqrt 10 + 10 - 5 sqrt 10`
`= 10`.
5) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
\(=2\sqrt{3}\cdot\sqrt{3}+\sqrt{5}\cdot\sqrt{3}-\sqrt{2^2\cdot15}\)
\(=2\cdot3+\sqrt{15}-2\sqrt{15}\)
\(=6+\left(1-2\right)\sqrt{15}\)
\(=6-\sqrt{15}\)
6) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{2}\cdot\sqrt{5}+2\sqrt{5}\cdot\sqrt{5}-\sqrt{5^2\cdot10}\)
\(=5\sqrt{10}+2\cdot5-5\sqrt{10}\)
\(=\left(5-5\right)\sqrt{10}+10\)
\(=0+10\)
\(=10\)
Rút gọn:
\(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`
`=`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`
`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`
`=2(\sqrt5-1)sqrt{6+2\sqrt5}`
`=2(\sqrt5-1)(\sqrt5+1)`
`=2(5-1)`
`=8`
`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`
`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`
`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`
`=2(\sqrt5-1)sqrt{6+2\sqrt5}`
`=2(\sqrt5-1)(\sqrt5+1)`
`=2(5-1)`
`=8`
`(4\sqrt2+\sqrt{30})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`
`=\sqrt2(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`
`=(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{8-2\sqrt{15}}`
`=(4+\sqrt{15})(\sqrt5-\sqrt3)(\sqrt5-\sqrt3)`
`=(4+\sqrt{15})(8-2\sqrt{15})`
`=2(4+\sqrt{15})(4-\sqrt{15})`
`=2(16-15)`
`=2`
a) \(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
\(=2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{5}-1}\)
\(=\dfrac{2\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{5}+1\right)}{\sqrt{2}}\)
\(=2\cdot4=8\)
Rút gọn
1) \(E=\left(\sqrt{11}-3\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{54}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)
2) \(F=\frac{\left(\sqrt{3-\sqrt{5}}-1\right)\left(\sqrt{3-\sqrt{5}}\left(3-\sqrt{5}\right)+1\right)}{4-\sqrt{5}-\sqrt{3-\sqrt{5}}}+\sqrt{5}\)