Những câu hỏi liên quan
TH
Xem chi tiết
TP
Xem chi tiết
NL
Xem chi tiết
NN
20 tháng 4 2017 lúc 10:52

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

Bình luận (0)
H24
Xem chi tiết
AN
1 tháng 7 2017 lúc 17:48

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

Bình luận (0)
H24
5 tháng 7 2017 lúc 18:01

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

Bình luận (0)
H24
Xem chi tiết
NM
4 tháng 9 2021 lúc 11:33

Ta có \(\sqrt{a^{2012}+2011}\le\dfrac{a^{2012}+2011+1}{2}\)

\(\Leftrightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}\ge\dfrac{a^{2012}+2012}{\dfrac{a^{2012}+2012}{2}}=2\)

Dấu \("="\Leftrightarrow a^{2012}+2011=1\Leftrightarrow a\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

\(\Rightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}>2\)

Bình luận (0)
TD
Xem chi tiết
HP
6 tháng 2 2016 lúc 16:39

đặt \(A=\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}};B=\sqrt{2012}+\sqrt{2013}\)

ta có:\(A=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}=\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)

\(\Rightarrow A=\left(\sqrt{2013}+\sqrt{2012}\right)+\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)>\sqrt{2012}+\sqrt{2013}=B\)

vậy A>B(đpcm)
 

Bình luận (0)
MT
6 tháng 2 2016 lúc 16:34

Xét hiệu bằng cách lấy vế trái trừ vế phải nhé bạn

Bình luận (0)
TD
6 tháng 2 2016 lúc 16:36

chỉ mik cách lm luôn đi bạn

Bình luận (0)
BA
Xem chi tiết
TT
Xem chi tiết
HP
Xem chi tiết
HN
20 tháng 10 2016 lúc 18:42

Ta gán : \(1992\rightarrow D\)\(1992\rightarrow A\)

\(D=D+1:A=D.\sqrt[D]{A}\)

CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.

Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.

Bình luận (0)
BA
Xem chi tiết