Tim TGNN của BT. A=6x/x-1/+/3x-2/+2x
TÌM GTNN CỦA BT SAU: A=6x/x-1/+/3x-2/+2x
Tìm bt lớn nhất hay nhỏ nhất nếu có của các bt sau:
a) x^2 + x + 2/3
b)9x^2 - 2x - 1/3
c)5x^2 - 2x + 1
d)-x^2 + 3x - 1
e)-4^2 - 6x + 3
f)-3x^2 + 4x - 1/2
g)x^2 + 2x - 1
h)x^2 - 6x + 9
i)4x^2 - 2x
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)
Tìm x , bt
a, 2x( 3x + 1 ) + 3x ( 4 - 2x ) = 7
b, 4(18 - 5x ) - 12( 3x - 7 ) = 15(2x - 16 ) - 6(x + 14 )
c, ( 3x + 2 ) ( 2x + 9 ) - ( x + 2 ) ( 6x + 1 ) = ( x + 1 ) - ( x - 6 )
a: \(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
=>14x=7
hay x=1/2
b: \(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
=>-56x+156=24x-324
=>-80x=-480
hay x=6
c: \(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6=7\)
=>18x+16=7
=>18x=-9
hay x=-1/2
1. phan tich da thuc thanh nhan tu
a. x^2+3x-5 b. 4x^2-16x+7 c. 5x^2-6x-7 d.x^4+2x^3-4x-4
2. tim x,y bt: x^2+y^2+z^2=xy+yz+zx va x^2012+y^2012+z^2012= 3^2013
3. tim x: a. x^2-4x=21 b. x^2-4x+4=0 c.x^2-6x=2x=11 d. 4^x-12.2^x+32=0
tim x bt a)x^2*x=2 b)2x^3*3x-1=1
B1Tìm gtln của bt
A=4x-x^2+3
B=x-x^2
C=2x-2x^2-5
B2. Rút gọn bt
a,(6x+1)2+(6x-1)2-2(1+6x)(6x-1)
b,x(2x2-3)-x2(5x+1)+xx2
c,3(22+1)(24+1)(28+1)(216+1)
d,3x(x-2)-5x(1-x)-8(x2-3)
MK CẦN NGAY NÊN MONG M.N GIÚP VS
tìm x bt
a)(2x-3)^2=(x-2)^2
b) (3x+1)^2=(2x-1)^2
c) x^3+2x^2+6x+12=0
giúp mk nha
Câu a : \(\left(2x-3\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy ........
b ) \(\left(3x+1\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=0\)
\(\Leftrightarrow5x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy.............
c ) \(x^3+2x^2+6x+12=0\)
\(\Leftrightarrow x^2\left(x+2\right)+6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x\left(loại\right)\end{matrix}\right.\) Do \(x^2+6>0\)
Vậy.........
a)\(\left(2x-3\right)^2=\left(x-2\right)^2\)
\(2x-3=x-2\)
\(2x-3-x+2=0\)
\(x-1=0\)
\(x=1\)
b)\(\left(3x+1\right)^2=\left(2x-1\right)^2\)
\(3x+1=2x-1\)
\(3x+1-2x+1=0\)
\(x+2=0\)
\(x=-2\)
c)\(x^3+2x^2+6x+12=0\)
\(\left(x^3+2x^2\right)+\left(6x+12\right)=0\)
\(x^2\left(x+2\right)+6\left(x+2\right)=0\)
\(\left(x^2+6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-6\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{6}\\x=-2\end{matrix}\right.\)
Vậy \(x=-\sqrt{6}\) hoặc \(x=-2\)
Mình sửa câu c, trường hợp \(x=-\sqrt{6}\) ,x chỉ = -2 thô ạ,loại trường hợp kia dùm
tìm gtln của bt M=-x2+6x+1
P=-x2+x
T=-2x2+3x+5
M = -x2 +3x + 3x + 9 - 8
M = -x .( -x -3 ) - 3 .( -x -3 ) - 8
M =( -x -3 ) . ( -x -3 ) - 8
M = ( -x -3 ) 2 -8
Vì ( -x -3 )2 >= 0 suy ra ( -x -3 ) 2 -8 >= -8
=> - ( -x -3) 2 + 8 <= 8
dấu " = xẩy ra <=> -x -3 =0 <=> x = -3
Cho M = -2 x(3X^3 - 4X^2 +7X-6+(6X^3-8X^2+7X--4-3x)
tim X bt M = 0