Tìm x:
a) \(\sqrt{2x-1}\) ≥ \(\sqrt{x+1}\)
b) \(\sqrt{2x}\) ≤ \(\sqrt{x^2}\)
Tìm x:
a. \(\sqrt{9x^2}=2x+1\)
b. \(\sqrt{x^2+6x+9}=3x-1\)
c. \(\sqrt{x^2-2x+4}=2x-3\)
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
Tìm x:
a)\(\dfrac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\dfrac{x-1}{25}}=\dfrac{29}{15}\)
b)\(\dfrac{3x-2}{\sqrt{x-1}}-\sqrt{x+1}=\sqrt{2x-3}\)
Tìm giá trị của x:
a) \(\sqrt{2x}< \dfrac{1}{3}\)
b) \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)
c) \(\sqrt{-2x+1}>7\)
d) \(\sqrt{2x-1}\le\dfrac{3}{2}\)
a.ĐKXĐ: \(x\ge0\)
\(\sqrt{2x}< \dfrac{1}{3}\) \(\Leftrightarrow2x< \dfrac{1}{3}\Leftrightarrow6x< 1\Leftrightarrow x< \dfrac{1}{6}\)
b. ĐKXĐ: \(x\ge\dfrac{1}{6}\)
\(\sqrt{-3x+\dfrac{1}{2}}\ge5\Leftrightarrow-3x+\dfrac{1}{2}\ge25\Leftrightarrow x=-\dfrac{49}{6}\)
c. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{-2x+1}>7\) \(\Leftrightarrow-2x+1>49\Leftrightarrow x=-24\)
d. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}\le\dfrac{3}{2}\Leftrightarrow2x-1\le\dfrac{9}{4}\Leftrightarrow x=\dfrac{13}{8}\)
a: Ta có: \(\sqrt{2x}< \dfrac{1}{3}\)
\(\Leftrightarrow2x< \dfrac{1}{9}\)
\(\Leftrightarrow x< \dfrac{1}{18}\)
Kết hợp ĐKXĐ, ta được: \(0\le x< \dfrac{1}{18}\)
b: Ta có: \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)
\(\Leftrightarrow-3x+\dfrac{1}{2}\ge25\)
\(\Leftrightarrow-3x\ge\dfrac{49}{2}\)
hay \(x\le-\dfrac{49}{6}\)
c: Ta có: \(\sqrt{-2x+1}>7\)
\(\Leftrightarrow-2x+1>49\)
\(\Leftrightarrow-2x>48\)
hay x<-24
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
Tìm x:
a. \(\sqrt{x-3}>2\)
b. \(\sqrt{36x^2-12x+1}=5\)
c. \(\sqrt{9\left(5x^2-2x+16\right)}=3x+12\)(hướng dẫn cụ thể đi ạ)
a) \(\sqrt{x-3}>2\left(đk:x\ge3\right)\)
\(\Leftrightarrow x-3>4\Leftrightarrow x>7\)
b) \(\sqrt{36x^2-12x+1}=5\)
\(\Leftrightarrow\sqrt{\left(6x-1\right)^2}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-\dfrac{2}{3}\end{matrix}\right.\)
c) \(\sqrt{9\left(5x^2-2x+16\right)}=3x+12\left(đk:x\ge-4\right)\)
\(\Leftrightarrow9\left(5x^2-2x+16\right)=9x^2+72x+144\)
\(\Leftrightarrow36x^2-90x=0\)
\(\Leftrightarrow18x\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)
Tìm x:
a)\(\sqrt{3x-6}\)=3
b)\(\sqrt{5x-16}\)=2
c)Tìm điều kiện xác định của biểu thức: B=\(\dfrac{2x-3}{x^2-4x+3}\)
a) ĐK: x ≥ 2
\(\sqrt{3x-6}=3\)
\(\Leftrightarrow3x-6=9\)
<=> 3x = 15
<=> x = 5
Vậy:....
b) ĐK: 5x - 16 ≥ 0
<=> 5x ≥ 16
<=> x ≥ 16/5
\(\sqrt{5x-16}=2\)
<=> 5x - 16 = 4
<=> 5x = 20
<=> x = 4
c) ĐK: \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
bình phương hai vế ta được:
a)điều kiện của x:x≥2
3x-6=9 <=> x=5(nhận)
b)ĐK: x≥16/5
5x-16=4 <=>x=4(nhận)
c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)= \(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)
ĐKXĐ: x≠3 ;x≠1
a,\(\sqrt{3x-6}=3\) (với x\(\ge\)2)
=>\(\left(\sqrt{3x-6}\right)^2=3^2\)
<=>\(3x-6=9\)<=>\(3x=9+6\)<=>x=\(\dfrac{15}{3}\)=5(thỏa mãn)
b,\(\sqrt{5x-16}=2\) (với x\(\ge\)16/5)
=>\(\left(\sqrt{5x-16}\right)^2=2^2\)<=>\(5x-16=4< =>5x=20< =>x=4\)(thỏa mãn)
c,B xác định khi \(x^2-4x+3\ne0< =>x^2-2.2.x+2^2-1\ne0\)
\(< =>\left(x-2\right)^2-1\ne0\)
\(< =>\left(x-2+1\right)\left(x-2-1\right)\ne\)0
\(< =>\left(x-1\right)\left(x-3\right)\ne0\)
\(< =>\left[{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
Tìm x:a,\(\sqrt{2x-1}=\sqrt{5}\)
b,\(\sqrt{3}x^2-\sqrt{12}=0\)
c,\(\sqrt{x-5}=3\)
d,\(\sqrt{x^2-4}+\sqrt{x^2+4x+4=0}\)
a: =>2x-1=5
=>2x=6
=>x=3
b: \(\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\)
=>x^2=2
=>\(x=\pm\sqrt{2}\)
c: =>x-5=9
=>x=14
d: \(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
Tìm điều kiện để các biểu thức sau xác định
a)\(\sqrt{x+1}-\dfrac{1}{2}\)
b)\(2.\sqrt{1-2x}-\dfrac{\sqrt{3}-1}{4}\)
c)\(\sqrt{x+1}-\sqrt{x-2}\)
d)\(\sqrt{2-3x}-\sqrt{1-2x}\)
e)\(2.\sqrt{\sqrt{3}-2x}+\dfrac{1}{x-1}\)
f)\(\dfrac{1}{2}.\sqrt{x-\dfrac{\sqrt{3}}{2}}-\dfrac{1}{\sqrt{x}-1}\)
g)\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+2}\)
h)\(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x^2+2}}\)
a, \(x+1\ge0\Leftrightarrow x\ge-1\)
b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)
e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)
f, \(\left\{{}\begin{matrix}x-\dfrac{\sqrt{3}}{2}\ge0\\x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{\sqrt{3}}{2}\\x\ge0\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\)
g, \(\left\{{}\begin{matrix}\sqrt{x}-1\ne0\\\sqrt{x}+2\ne0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
Tìm Min và Max(nếu có)
A=2x-\(\sqrt{x}\)
B=x+\(\sqrt{x}\)
C=1+\(\sqrt{2-x}\)
D=\(\sqrt{-x^2+2x+5}\)
E=\(\dfrac{1}{2x-\sqrt{x}+3}\)
F=\(\dfrac{1}{3-\sqrt{1-x^2}}\)
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$
Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$