0,(12): 1,(16)= x: 0,(3)
7)(16-8x)(2-6x)=0
8) (x+4)(6x-12)=0
9) (11-33x)(x+11)=0
10) (x-1/4)(x+5/6)=0
11) (7/8-2x)(3x+1/3)=0
12)3x-2x^2=0
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Giải phương trình tích
7)(16-8x)(2-6x)=0
8) (x+4)(6x-12)=0
9) (11-33x)(x+11)=0
10) (x-1/4)(x+5/6)=0
11) (7/8-2x)(3x+1/3)=0
12)3x-2x^2=0
mk lưu nhầm ảnh ở bài dưới của câu
Bài 3. Tìm x biết:
1) |x| = 10 2) |x - 8| = 0 3) 7 + |x| = 12
4) |x + 1| = 3 5) 15 - x = 16 - (14 - 42) 6) 210 - (x - 12) = 168
1 , 10
2 , 8
3 , 5
4 , 2
5 , 1
6 ,
1/ `|x|=10<=> x=\pm 10`
2/ `|x-8|=0<=>x-8=0<=>x=8`
3/ `7+|x|=12<=>|x|=5<=>x=\pm 5`
4/ `|x+1|=3`
$\Leftrightarrow\left[\begin{array}{1}x+1=3\\x+1=-3\end{array}\right.\\\Leftrightarrow\left[\begin{array}{1}x=3\\x=-4\end{array}\right.$
5/ `15-x=16-(14-42)`
`<=>15-x=16+28`
`<=>15-x=44`
`<=>x=-29`
6/ `210-(x-12)=168`
`<=>210-x+12=168`
`<=>222-x=168`
`<=>x=54`
1.
\(\left|x\right|=10\Leftrightarrow x=\pm10\)
2.
\(\left|x-8\right|=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
3.
\(7+\left|x\right|=12\Leftrightarrow\left|x\right|=5\Leftrightarrow x=\pm5\)
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
Li_ke đi đồ chó
a). ( x-3)(x²-4)=0
<=> x-3=0=>x=3
<=>(x-2)(x+2)=0. =>x=\(\pm2\)
b). (x²+4)(13-x)=0
<=> ((x+2)(x+2)=0. =>x=-2
<=> 13-x=0. =>x=13
c)2x+1-12=7
<=>2x=7+12-1=18
=>x=18:2=9
d). -16+3+2x=0
<=>2x=16-3=13
=>x=\(\frac{13}{2}\)
e). x-x=0
<=>0x=0
F). x+x=0
<=> 2x=0
<=> x=0
Tìm các số nguyên x, y sao cho:
a) |x+7|+|2y-12|=0
b) |x-(-12)+|y|=0
c) |x+12-8|+|x+y+1|=0
d) |x+y|+|x+16-12|=0
a) \(|x+7|+|2y-12|=0\)
Vì \(\hept{\begin{cases}|x+7|\ge0;\forall x,y\\|2y-12|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow|x+7|+|2y-12|\ge0;\forall x,y\)
Do đó \(|x+7|+|2y-12|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+7|=0\\|2y-12|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-7\\y=6\end{cases}}\)
Vậy ...
các phần sau tương tự
a) Ta có :
\(\left|x+7\right|\ge0\)
\(\left|2y-12\right|\ge0\)
Để |x+7| + | 2y - 12| = 0
=> x +7 = 0 và 2y - 12= 0
x = 7 2y = 12
y = 12 : 2
y = 6
Vậy x = 7 ; y = 6
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
a, x^3-6x^2+11x-12=0
b, (x-3)^2-16=0
C, (x^2-9).(3x+2)=(x^2-9).(x^2-3)
D, x^3-x^2+x-1=0
E, x^3+x^2-x-1=0
Giải phương trình
|12 - x | - 12+5 = 35
| x + 7| + | 2y - 12 | = 0
| x + y | + | x + 16 - 12| = 0
|x + 12 - 8| + | x + y + 1| = 0
|x - ( -12)| + | y | = 0
NHANH LÊN MK CẦN GẤP GẤP LẮM LUÔN LUÔN ĐẤY
(Bài 14; Tìm x biết
1) x ^ 2 - 9 = 0
4) 4x ^ 2 - 4 = 0
7) (3x + I) ^ 2 - 16 = 0
10) (x + 3) ^ 2 - x ^ 2 = 45
2) 25 - x ^ 2 = 0
5) 4x ^ 2 - 36 = 0
8) (2x - 3) ^ 2 - 49 = 0
11) (5x - 4) ^ 2 - 49x ^ 2 = 0
3) - x ^ 2 + 36 = 0
6) 4x ^ 2 - 36 = 0
9) (2x - 5) ^ 2 - x ^ 2 = 0
12) 16 * (x - 1) ^ 2 - 25 = 0
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6
X : ( - 21 ) =16
X : 12 = -43
( X + 30 ).( X + 3 ) =0
(12 - X ).(X + 3)=0
Giúp mik nhé thanks