\(^{3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A=\(^{3^2.10^2-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3}\)
Bài 1: Tính. ( Nhanh nếu có thể )
a) \(25.8^3-23.8^3\)
b) \(5^4-2.5^3\)
c) \(2.4^3-4^3.7-6.4^3\)
d) \(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3\)
a) \(25.8^3-23.8^3=8^3\left(25-23\right)\)
\(=8^3.2\)
\(=2^9.2=2^{10}\)
b) \(5^4-2.5^3=5^3.5-2.5^3\)
\(=5^3\left(5-2\right)\)
\(=5^3.3=375\)
c)\(2.4^3-4^3.7-6.4^3=4^3\left(2-7-6\right)\)
\(=4^3.-11=-704\)
d)\(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3\)
\(=3^2.10^3-\left[13^2-2^2\left(5^2+15\right)\right].10^3\)
\(=3^2.10^3-\left[13^2-2^2.40\right].10^3\)
\(=10^3\left[3^2-9\right]\)
\(=0\)
Bài 1: Tính ( Nhanh nếu có thể )
a) \(25.8^3-23.8^3\)
b) \(5^4-2.5^3\)
c) \(2.4^3-4^3.7-6.4^3\)
d) \(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right]\)
Bài 1 :
a) \(25.8^3-23.8^3\)
\(=8^3.\left(25-23\right)\)
\(=512.2=1024\)
b) \(5^4-2.5^3\)
\(=5^3.5-2.5^3\)
\(=5^3\left(5-2\right)\)
\(=125.3\)
\(=375\)
c) \(2.4^3-4^3.7-6.4^3\)
\(=4^3.\left(2-7-6\right)\)
\(=64.\left(-11\right)=-704\)
d) \(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right]\)
\(=9.1000-\left[169-\left(25.4+4.15\right)\right]\)
\(=9000-\left[169-4\left(25+15\right)\right]\)
\(=9000-\left[169-4.40\right]\)
\(=9000-\left[169-160\right]\)
\(=9000-9=8991\)
a.\(25.8^3-23.8^3=8^3.\left(25-23\right)=512.2=1024\)
b. \(5^4-2.5^3=5^3.\left(5-2\right)=125.3=375\)
c. \(2.4^3-4^3.7-6.4^3=4^3.\left(2-7-6\right)\)\(=64.\left(-11\right)=-704\)
d. \(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right]=\)\(3^2.10^3-\left[13^2-\left(100+60\right)\right]\) \(=3^2.10^3-\left(13^2-160\right)=9000-9=8991\)
thực hiên phép tính :
a, \(\left(3^2\right)^2-\left(2^3\right)^2-\left(-5^2\right)^2\)
b, \(2^3+3.\left(-\dfrac{1}{2}\right)^0-\left(\dfrac{1}{2}\right)^2.4+\left(\left(-2\right)^2:\dfrac{1}{2}\right):8\)
c, \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
d, \(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(a, \)\(\left(3^2\right)^2-\left(2^3\right)^2-\left(-5^2\right)^2=9^2-8^2-10^2\)
= \(81-64-100\)
\(=-83\)
\(b,\)\(2^3+3.\left(-\dfrac{1}{2}\right)^0-\left(\dfrac{1}{2}\right)^2.4+\left(\left(-2\right)^2:\dfrac{1}{2}\right):8=8+3.1-\dfrac{1}{4}.4+\left(4:\dfrac{1}{2}\right):8\) \(=8+3-1+8:8\)
\(=8+3-1+1\)
\(=11\)
a)\(\dfrac{4^2.4^3}{2^{10}}\)
b)\(\dfrac{\left(0,6\right)^5}{\left(0.2\right)^6}\)
c)\(\dfrac{2^7.9^3}{6^5.8^2}\)
d)\(\dfrac{6^3+3.6^2+3^3}{-13}\)
a,
\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)
b,
\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{243}{0,2}=\dfrac{243}{\dfrac{1}{5}}=243\cdot5=1215\)
c,
\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^6\cdot2\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
d,
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}=\dfrac{\left(2\cdot3\right)^3+3\cdot\left(2\cdot3\right)^2+3^3}{-13}=\dfrac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{2^3\cdot3^3+2^2\cdot3^3+3^3}{-13}\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\cdot13}{-13}=-3^3=-27\)
Tính
a,\(-2^3+2^2+\left(-1\right)^{2013}\)
b,\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2\)
c,\(2^3+3.\left(\frac{-1}{2013}\right)^0-\left(\frac{1}{2}\right)^2.4+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
a.
\(-2^3+2^2+\left(-1\right)^{2013}=-8+4-1=-5\)
b.
\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2=27^2-\left(-8\right)^2-25=729-64-25=640\)
c.
\(2^3+3\times\left(-\frac{1}{2016}\right)^0-\left(\frac{1}{2}\right)^2\times4-\left[\left(-2\right)^2\div\frac{1}{2}\right]=8+3\times0-\frac{1}{4}\times4-\left(4\times2\right)=8+3-1-8=2\)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Tìm số tự nhiên x, biết:
a) \(\left( {9x - {2^3}} \right):5 = 2\)
b) \(\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\)
a)
\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)
Vậy \(x = 2\)
b)
\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)
Vậy \(x = 3\)
bài 1)tính
a) \(\left(\frac{1}{3}-1\frac{5}{6}\right)^2\)
b) (0,25)10 . 410 . \(\sqrt{5^2-3^2}\)
c) \(\frac{\left(-3\right)^2.15^5+9^3.\left(-15\right)^3}{\left(-3\right)^{10}.5^5.2^3}\)
bài 2)tìm x biết
a)\(4-|x+\frac{1}{2}|=-1\)
giúp mình với mình đang cần gấp
\(\left(\frac{1}{3}-1\frac{5}{6}\right)^2\)
\(=\left(\frac{1}{3}-\frac{11}{6}\right)^2\)
\(=\left(\frac{2}{6}-\frac{11}{6}\right)^2=\left(-\frac{9}{6}\right)^2\)
\(=\left(-\frac{3}{2}\right)^2=\frac{9}{4}\)