Cho số b=3n-9/n+5, n E N
Tìm giá trị của n để b là số nguyên tố
cho A = 1/2-n( n là một số nguyên )
a) Số nguyên n phải có điều kiện gì để A là phân số?
b) Tìm các giá trị của n để A có giá trị là một số nguyên
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
Cho phân số n+5/n-2 (n thuộc N; n>3)
a) Tìm giá trị của n để phân số có giá trị là số tự nhiên
b) Tìm n để phân số là tối giản
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.
a) Để A là phân số thì n phải có điều kiện gì?
b) Tìm tất cả các số nguyên n để giá trị của A là một số nguyên
a, Để A là phân số thì n + 1 khác 0
=> n khác -1
b, Để A là số nguyên thì 5 chia hết cho n + 1
=> n + 1 thuộc {1; -1; 5; -5}
=> n thuộc {0; -2; 4; -6}
Vậy...
Cho A= n+8\2n+5 (n thuộc N*)
a)Chứng tỏ rằng phân số A luôn tồn tại
b) Tìm phân số A biết n=-3; 2n-6=2;n^2 -1 =0
c)cTìm các giá trị của n để A là số nguyên tố.
Cho biểu thức: A=\(\frac{3}{n-1}\)
a) Tìm giá trị của n để biểu thức A có giá trị bằng 1
b) Tìm giá trị n để A là số nguyên tố
Các bạn làm cho mình lời giải luôn nha. Cảm ơn các bạn nhiều :-* :-*
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
Cho \(A=\frac{9n+29}{3n+4}\)
a)Tìm số nguyên n để A là số tự nhiên
b)Tìm số tự nhiên n để A là phân số tối giản.
c)Với giá trị nào của n trong khoảng từ 15 đến 26 thì A rút gọn được
Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó: A=\(\frac{3n+9}{n-4}\)
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Cho biểu thức 𝐴 = 4
𝑛-1
(𝑛 ∈ 𝑍)
a) Số nguyên n phải có điều kiện gì để A là phân số?
b) Tìm tất cả các giá trị nguyên của n để A là số nguyên.
giúp mik vs
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
a) 2-n khác 0
2n khác 4
=> n khác 2
b) 2n+1 chia hết 2n-4
2n-4+5 chia hết 2n-4
=> 2n-4+5/2n-4=2n-4/2n-4+5/2n-4=1+5/2n-4
=> 5 chia hết 2n-4
=> 2n-4 là Ư(5)=( 5;-5;1;-1)
=> 2n=(9;-1;5;3)
=> x ko thỏa mãn
Giúp mình câu này với
1. tìm số nguyên n sao cho
a. n+7 phần 3n-1 là số nguyên
b. 3n+2 phần 4n-5 là stn
2.cho A=2n+1 phần n-3 + 3n-5 phần n-4 - 4n-5 phần n-3
tìm số nguyên n để A có giá trị nguyên
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)