Tìm x,y số nguyên tố, biết: x2 - 12y2 = 1
tìm các số nguyên tố x và y biết x2 - 18.y2 = 1
: Tìm x; y là số nguyên để : a) xy=4(x+y)+1
b) x(x-8)=y2 -117
c) x 2 -xy-12y2=3
a,\(\Leftrightarrow xy-4x-4y+16=17\\ \Leftrightarrow\left(x-4\right)\left(y-4\right)=17\)
mà x,y nguyên nên x-4,y-4 là ước của 17
...
\(a,xy=4\left(x+y\right)+1\\ \Leftrightarrow4x-xy+4y+1=0\\ \Leftrightarrow4x\left(1-y\right)-4\left(1-y\right)=-5\\ \Leftrightarrow\left(x-1\right)\left(1-y\right)=-\dfrac{5}{4}\\ \Leftrightarrow x;y\in\varnothing\left(x,y\in Z\right)\)
a) Tìm x,y nguyên biết: 2x(3y-2)+(3y-2)=-55
b) tìm các số nguyên tố x,ysao cho x2+117=y2
c)chúng tỏ rằng nêu p là số nguyên tố lớn hơn 3 thì p2-1 cgia hết cho 3
a Tìm các sô nguyên tố x,y biết x2 x 993.y 2006b Tìm các số nguyên dương a,b biết a lớn hơn b là 5 và BCNN a,b 100
giúp mn với mn tick đúng cho
1, cho P là số nguyên tố lớn hơn 3 . Chứng minh rằng : P2 - 1 chia hết cho 24
2, tìm các số nguyên x và y biết x2 - 6y2 = 1
Lời giải:
Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.
Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
TH1: $p=6k+1$ thì:
$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$
Nếu $k$ lẻ thì $3k+1$ chẵn.
$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$
Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$
TH2: $p=6k+5$
$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn
$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Nếu $k$ lẻ thì $k+1$ chẵn
$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$
Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
\(\Leftrightarrow x^2-1=6y^2\)
Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)
\(\Rightarrow4\left(k^2+k\right)=6y^2\)
\(\Rightarrow2\left(k^2+k\right)=3y^2\)
Do 2 chẵn \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
Mà y là SNT \(\Rightarrow y=2\)
Thay vào pt đầu:
\(x^2+1=6.2^2+2\Rightarrow x=5\)
Vậy (x;y)=(5;2)
Ta có: \(x^2-1=2y^2\)
Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ
⇒ x= 2k+1
Ta có: \(\left(2k+1\right)^2-1=2y^2\)
⇒ \(4\left(k^2+k\right)=2y^2\)
⇒\(2\left(k^2+k\right)=y^2\)
Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn
Mà y là số nguyên tố ⇒ y = 2
Ta lại có: \(x^2-1=2.2^2\)
⇒ \(x^2-1=8\)
⇒\(x^2=8+1=9\)
⇒ x= -3 hoặc 3
Vì x là số nguyên tố nên x =3
Vậy x=3, y=2
tìm số nguyên tố x,y sao cho x2-2x+1=6y2-2x+2
Ta có: x2 – 2x + 1 = 6y2 -2x + 2
=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do 6y2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
Chúc học tốt!
Tìm hai số nguyên tố x và y sao cho: x2 - 2x + 1= 6y2 - 2x + 2.
Tìm hai số nguyên tố x và y sao cho: x2–2x + 1 = 6y2-2x + 2
1. Tìm số nguyên x, y biết,
(x + 2)2 + (y -4)2 + (2y -4)4 = 0
2. Tìm số nguyên x, biết
x2 - 2x = 3
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)