Cho A = 3 + 32 + 33 + ... + 3200 . Chứng tỏ rằng A không phải là số chính phương.
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
A=3+32+33+.....+320
Số trên là số chính phương hay không phải là số chính phương
Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.
cho A = 2008 +2007.2008 và 2006.2007.2008 hãy chứng tỏ rằng a là số chính phương còn b không phải là số chính phương
ai tick cho mik đến 260 thì mik tick cho cả đời
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a) 3 2 + 4 2
b) 13 2 - 5 2
c) 1 3 + 2 3 + 3 3 + 4 3
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a, 3 2 + 4 2
b, 13 2 - 5 2
c, 1 3 + 2 3 + 3 3 + 4 3
a, 3 2 + 4 2 = 25 = 5 2 là số chính phương.
b, 13 2 - 5 2 = 144 = 12 2 là số chính phương.
c, 1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2 là số chính phương.
Cho \(A=1+3+3^2+3^3+3^4+...+3^{90}\) CMR \(A\) không phải là số chính phương
Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$
$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$
$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$
$=13+40(3^3+3^7+...+3^{87})$
$\Rightarrow A$ chia 5 dư 3
Do đó A không là scp.
Ta có:
\(A=1+3+3^2+3^3+...+3^{90}\)
\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)
\(3A=3+3^2+3^3+...+3^{91}\)
\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)
\(2A=3^{91}-1\)
\(A=\dfrac{3^{91}-1}{2}\)
Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương
Cho A=2 mux2+2 mũ 3+...+2 mũ 20.Chứng tỏ rằng A+4 không phải số chính phương
Chứng tỏ rằng
A =1+3+3^2+3^3+...+3^2014
A không phải là số chính phương
Cho biểu thức: M = 5 + 5 2 + 5 3 + … + 5 80 . Chứng tỏ rằng: a) M chia hết cho 6. b) M không phải là số chính phương.
tự giải hả trời
cho bn bt lun nha
bn lm đúng rùi
đúng nha
a) Ta có: M = 5 + 5 2 + 5 3 + … + 5 80 = 5 + 5 2 + 5 3 + … + 5 80 = (5 + 5 2) + (53 + 5 4) + (55 + 5 6) +... + (579 + 5 80) = (5 + 5 2) + 5 2 .(5 + 5 2) + 5 4(5 + 5 2) + ... + 5 78(5 + 5 2) = 30 + 30.52 + 30.54 + ... + 30.578 = 30 (1+ 5 2 + 5 4 + ... + 5 78) 30 b) Ta thấy : M = 5 + 5 2 + 5 3 + … + 5 80 chia hết cho số nguyên tố 5. Mặt khác, do: 5 2+ 5 3 + … + 5 80 chia hết cho 5 2 (vì tất cả các số hạng đều chia hết cho 5 2) M = 5 + 5 2 + 5 3 + … + 5 80 không chia hết cho 5 2 (do 5 không chia hết cho 5 2) VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí M chia hết cho 5 nhưng không chia hết cho 5 2 M không phải là số chính phương. (Vì số chính phương chia hết cho số nguyên tố p thì chia hết cho p 2).
Đúng ko???
M= 5+5^2+...+5^80
M= (5+5^2)+(5^3+5^4)+...+(5^79+5^80)
M= 5(1+5)+5^3(1+5)+...+5^79(1+5)
M= 5.6+5^3.6+...+5^79.6
M= 6(5+5^3+...+5^79) chia hết cho 6
=> M chia hết cho 6.