H24

Cho \(A=1+3+3^2+3^3+3^4+...+3^{90}\) CMR \(A\) không phải là số chính phương
�=1+3+32+33+34+...+390

         
AH
9 tháng 11 2023 lúc 11:24

Lời giải:

$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$

$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$

$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$

$=13+40(3^3+3^7+...+3^{87})$

$\Rightarrow A$ chia 5 dư 3

Do đó A không là scp.

Bình luận (0)
H9
9 tháng 11 2023 lúc 11:19

Ta có: 

\(A=1+3+3^2+3^3+...+3^{90}\)

\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)

\(3A=3+3^2+3^3+...+3^{91}\)

\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)

\(2A=3^{91}-1\)

\(A=\dfrac{3^{91}-1}{2}\)

Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
GM
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
YV
Xem chi tiết