phương trình: \(\left(2m-1\right)x^2+3x+2-m=0\) là phương trình bậc hai ẩn x khi nào
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. \(x + y > 3\)
B. \({x^2} + {y^2} \le 4\)
C. \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1\)
D. \({y^3} - 2 \le 0\)
Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3
Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).
Chọn A
Phương trình (3m – 1)x2 – 3x + 2m + 1 = 0 là phương trình bậc hai một ẩn khi :
a) m # 1/3
b) m # 2/3
c) m#1
d) m#3
Cho phương trình bậc 2 ẩn số x:
\(x^2-2\left(m+1\right)x+m-4=0\) (1)
a.Giải phương trình (1) khi m = -5
b.Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1;x2 với mọi giá trị m
a. Với \(m=-5\) pt trở thành:
\(x^2+8x-9=0\)
\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)
b. Ta có:
\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m
Tìm điều kiện của tham số m để phương trình bậc 2 ẩn x sau có 2 nghiệm phân biệt: \(\left(3-2m\right)x^2-\left(1-4m\right)x+1-2m=0\)
Ta có: \(\text{Δ}=\left(1-4m\right)^2-4\left(3-2m\right)\left(1-2m\right)\)
\(=16m^2-8m+4-4\left(2m-3\right)\left(2m-1\right)\)
\(=16m^2-8m+4-4\left(4m^2-2m-6m+3\right)\)
\(=16m^2-8m+4-4\left(4m^2-8m+3\right)\)
\(=16m^2-8m+4-16m^2+32m-12\)
\(=24m-8\)
Để phương trình có hai nghiệm phân biệt thì
\(\left\{{}\begin{matrix}3-2m\ne0\\24m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne3\\24m>8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{3}{2}\\m>\dfrac{1}{3}\end{matrix}\right.\)
Cho phương trình ẩn x:
\(\left(m^2-m+1\right)x+2m-3=0\)
Có bao nhiêu kết quả của phương trình đã cho không phải là phương trình bậc nhất một ẩn
Tìm điều kiện của tham số m để phương trình bậc 2 ẩn x sau có 2 nghiệm phân biệt: \(\left(m+1\right)x^2-\left(2m-1\right)x+m=0\)
\(\Delta=\left(2m-1\right)^2-4\cdot\left(m+1\right)\cdot m\)
\(=4m^2-4m+4-4m^2-4m\)
\(=-8m+4\)
Để phương trình có hai nghiệm phân biệt thì
\(\left\{{}\begin{matrix}m+1\ne0\\-8m+4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-8m>-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)
Cho phương trình: \(\left(m^2+1\right)x-2m=0\)
a/ Chứng minh phương trình trên luôn là phương trình bậc nhất 1 ẩn với mọi giá trị của m
b/ Tìm m để nghiệm của phương trình đạt GTNN
Cho phương trình\(x^2-\left(m-2\right)x-2m=0\) (với ẩn là x)
Tìm điều kiện m để phương trình có hai nghiệm \(x_1\),\(x_2\) thỏa mãn \(2x_1+3x_2=0\)
Để phương trình có 2 nghiệm x1,x2
\(\Leftrightarrow\Delta=\left(m-2\right)^2-4\cdot\left(-2m\right)\ge0\)
\(\Leftrightarrow m^2-4m+4+8m\ge0\)
\(\Leftrightarrow\left(m+2\right)^2\ge0\) (luôn đúng)
Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp định lí Vi-ét và đề bài ta có điều kiện:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2\left(m-2-x_2\right)+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2m-4-2x_2+3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=4-2m\end{matrix}\right.\)
Cũng theo Vi-ét:
\(x_1x_2=-2m\) \(\Rightarrow\left(3m-6\right)\left(4-2m\right)=-2m\)
\(\Rightarrow-6m^2+26m-24=0\)
\(\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(m\in\left\{3;\dfrac{4}{3}\right\}\) thỏa mãn đề
Tick nha 😘
\(\Delta=\left(m-2\right)^2+8m=\left(m+2\right)^2\ge0;\forall m\Rightarrow\) phương trình đã cho luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp hệ thức Viet và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m-4\\2x_1+3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=-2m+4\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m\)
\(\Rightarrow\left(3m-6\right)\left(-2m+4\right)=-2m\)
\(\Leftrightarrow-6m^2+26m-24=0\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)
Bài 1: Cho phương ẩn x: (1-2m) x – m-4=0 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất.
b) Tìm giá trị của m để phương trình có nghiệm x=2
c) Giải phương trình khi m= 5
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
cho phương trình ẩn x: \(x^2-\left(2m+1\right)x+m^2+5m=0\)
a, giải phương trình với m = -2
b, tìm m để phương trình có hai nghiệm sao cho tích các nghiệm bằng 6
a, \(x^2-\left(2m+1\right)x+m^2+5m=0\)
Với m=2
\(x^2-\left[2.\left(-2\right)+1\right]x+\left(-2\right)^2+5.\left(-2\right)=0\)
\(x^2+3x-6=0\)
\(\Delta=3^2-4.1.\left(-6\right)\)
\(=9+24\)
\(=33>0\Rightarrow\sqrt{\Delta}=\sqrt{33}\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-3+\sqrt{33}}{2}\)
\(x_2=\dfrac{-3-\sqrt{33}}{2}\)
Vậy khi m=-2 thì phương trình có nghiệm là \(x_1=\dfrac{-3+\sqrt{33}}{2};x_2=\dfrac{-3-\sqrt{33}}{2}\)
b,Ta có \(\Delta=\left[-\left(2m+1\right)\right]^2-4\left(m^2+5m\right)\)
\(=4m^2+4m+1-4m^2-20m\)
\(=1-16m\)
Phương trình có 2 nghiệm\(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow1-16m\ge0\)
\(\Leftrightarrow m\le\dfrac{1}{16}\)
Khi đó hệ thức viet ta có tích các nghiệm là\(m^2+5m\)
Mà tích các nghiệm bằng 6, do đó \(m^2+5m=6\)
\(\Leftrightarrow m^2+5m-6=0\)
Ta thấy \(a+b+c=1+5+\left(-6\right)=0\) nên \(m_1=1;m_2=-6\)
Đối chiếu với điều kiện \(m\le\dfrac{1}{16}\) thì \(m=-6\) là giá trị cần tìm
-Chúc bạn học tốt-