cho a,b thuộc N* biết anchia hết cho 7.Chứng minh rằng a2+98k chia hết cho 49
Bài 1 Cho biết 3a+2bchi hết cho 17 ( a,b thuộc N ) . Chứng minh rằng 10a + b chia hết cho 17
Bài 2 Cho biết a - 5b chia hết cho 17 ( a,b thuộc N) Chứng minh rằng 10a + b chia hết cho 17
Bài 3 a) Chứng minh rằng Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N). Điều ngược lại có đúng ko?
b)Chứng minh rằng 2x + 3ychia hết cho 17 thì 9x + 5y chia hết cho 17 (x,y thuộc N). Điều ngược lại có đúng ko?
Cho a và b thuộc N. Chứng minh rằng 5a2+15ab-b2 chia hết cho 49 khi và chỉ khi 3a+b chia hết cho 7
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
sssssssssssss
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
cho x,y thuộc N thoả mãn(3x+5y)(x+4y)chia hết cho 7.Chứng minh rằng (3x+5y)(x+4y) chia hết cho 49
Bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556
cho a , b thuộc N .Chứng minh 3a + b chia hết cho 7 chỉ khi 5a^2 + 15ab - b^2 chia hết cho 49
cho biết a + 5b chia hết (a,b thuộc N ) .chứng minh rằng 10a + b chia hết cho 7
Cho a,b thuộc N và a - b chia hết cho 7. Chứng minh rằng 4a + 3b chia hết cho 7
Do (a - b) ⋮ 7 ⇒ a - b = 7k (k ∈ ℕ)
⇒ a = 7k + b
⇒ 4a + 3b = 4.(7k + b) + 3b
= 28k + 4b + 3b
= 28k + 7b
= 7.(4k + b) ⋮ 7
Vậy (4a + 3b) ⋮ 7