Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NM
Xem chi tiết
DH
18 tháng 7 2017 lúc 7:55

Áp dụng BĐT Cauchy có:

 S= \(\frac{1}{x}\)\(\frac{4}{y}\)+\(\frac{9}{z}\)\(\frac{1^2}{x}\)\(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)\(\frac{6^2}{1}\)=36

Vậy Min S=36

Bình luận (0)
NT
18 tháng 7 2017 lúc 9:38

cái đó là bđt schwarts Đ à

Bình luận (0)
PD
14 tháng 2 2018 lúc 15:40

đàm thi hương sai chắc luôn 

cô si dạng akuma xảy ra khi các số hạng = nhau nhé

nếu m làm như vậy thì dấu = xảy ra khi x=y=z=1/3

thay số ta được

\(\frac{1}{\left(\frac{1}{3}\right)}+\frac{4}{\left(\frac{1}{3}\right)}+\frac{9}{\left(\frac{1}{3}\right)}=36\)

\(\frac{14}{\left(\frac{1}{3}\right)}=36\)

\(\frac{14}{\frac{1}{3}}=\frac{14.3}{1}=\frac{42}{1}\) sai

Bình luận (0)
AV
Xem chi tiết
H24
20 tháng 7 2019 lúc 12:08

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

Bình luận (0)
H24
20 tháng 7 2019 lúc 12:15

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

Bình luận (0)
H24
20 tháng 7 2019 lúc 12:15

bài 3 min hay max ?

Bình luận (0)
DA
Xem chi tiết
HV
Xem chi tiết
NL
15 tháng 3 2020 lúc 21:35

\(S=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{10}=\frac{2}{5}\)

Dấu "=" xảy ra khi \(x=y=5\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
ND
Xem chi tiết
HF
15 tháng 8 2020 lúc 0:04

+) \(P=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}=\frac{x^2}{x\sqrt{1-x^2}}+\frac{y^2}{y\sqrt{1-y^2}}\)

\(\ge\frac{\left(x+y\right)^2}{x\sqrt{1-x^2}+y\sqrt{1-y^2}}=\frac{1}{x\sqrt{1-x^2}+y\sqrt{1-y^2}}\)

+) \(A=x\sqrt{1-x^2}+y\sqrt{1-y^2}\)

\(A^2=x^2+y^2-y^4-x^4+2xy\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\)

+) \(B=x^2+y^2-x^4-y^4=x^2+\left(1-x\right)^2-x^4-\left(1-x\right)^4\)

\(-\frac{B}{2}+\frac{3}{16}=x^4-2x^3+2x^2-x+\frac{3}{16}=\left(x^2-x+\frac{3}{4}\right)\left(x-\frac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow B\le\frac{3}{8}\)

+) \(A^2\le\frac{3}{8}+2\frac{\left(x+y\right)^2}{4}\sqrt{1-x^2-y^2+x^2y^2}\)

\(\le\frac{3}{8}+\frac{1}{2}\sqrt{1-\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)^4}{16}}=\frac{3}{8}+\frac{1}{2}\sqrt{1-\frac{1}{2}+\frac{1}{16}}=\frac{3}{8}+\frac{1}{2}\cdot\frac{3}{4}=\frac{3}{4}\)

\(\Rightarrow A\le\frac{\sqrt{3}}{2}\)

+) \(P=\frac{1}{A}\ge\frac{2\sqrt{3}}{3}\)

Vậy \(P_{min}=\frac{2\sqrt{3}}{3}\)khi \(x=y=\frac{1}{2}\)

* Mình làm hơi tắt và có vẻ hơi dài

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 8 2020 lúc 21:10

Từ điều kiện đề bài ta có: \(P=\frac{x}{\sqrt{y^2+2xy}}+\frac{y}{\sqrt{x^2+2xy}}\)

Theo Holder: \(P.P.\left[x\left(y^2+2xy\right)+y\left(x^2+2xy\right)\right]\ge\left(x+y\right)^3\)

\(\Rightarrow P^2\ge\frac{\left(x+y\right)^3}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}\) (*)

Xét: \(\frac{\left(x+y\right)^3}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}-\frac{4}{3}=\frac{\left(x+y\right)\left(x-y\right)^2}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}\ge0\) (**)

Từ (*) và (**) suy ra: \(P\ge\frac{2}{\sqrt{3}}\)

Dấu "=" xảy ra khi x=y=1\2

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
HN
5 tháng 7 2018 lúc 10:10

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

Bình luận (0)
YY
5 tháng 7 2018 lúc 9:57

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1

Bình luận (0)
NS
5 tháng 7 2018 lúc 10:01

lm bất đẳng thức cô si nhé!!! Thanks

Bình luận (0)
H24
Xem chi tiết
AN
31 tháng 5 2017 lúc 14:15

\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)

\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
HT
31 tháng 5 2017 lúc 14:13

Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)

\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)

Bình luận (0)
AV
Xem chi tiết