Những câu hỏi liên quan
TM
Xem chi tiết
MT
Xem chi tiết
PN
Xem chi tiết
H24
15 tháng 7 2019 lúc 9:47

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

Bình luận (0)
XO
15 tháng 7 2019 lúc 9:49

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương

Bình luận (0)
BN
15 tháng 7 2019 lúc 9:50

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}\)

           \(=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

   \(A=\left(n+1\right)^2\)

\(\Rightarrow A\)là số chính phương 

Bình luận (0)
PN
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
LN
Xem chi tiết
PD
Xem chi tiết
NT
17 tháng 6 2022 lúc 22:14

Số số hạng là (2n-1+1):2=n(số)

Tổng là:

\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=n^2\)

Bình luận (0)
LL
Xem chi tiết