Một ca nô chạy xuôi dòng 72km sau đó chạy ngược dòng 28km thì mất 6 h
.Nếu ca nô chạy xuôi dòng 42km; ngược dòng 42 km thì cũng mất 6h .Tính vận tốc
ca nô khi nước yên lặng ?
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Một ca nô chạy trên sông trong 8h, xuôi dòng 81km và ngược dòng 105km.Một lần khác cũng chạy trên khúc sông đó, ca nô này chạy trong 4h, xuôi dòng 54km và ngược dòng 42km. Tính vận tốc khi xuôi dòng và ngược dòng của ca nô. Biết rằng vận tốc riêng và vận tốc dòng nước của ca nô không đổi.
gọi x là vận tốc khi xuôi dòng( x>0) (km/h)
gọi y là vận tốc ngược dòng(y>0) (km/h)
*, ca nô chạy trên sông trong 8 giờ:
xuôi dòng 81km:81/x và ngược dòng 105km: 105/y
=> phương trinh: 81/x + 105/y=8 (1)
*,ca nô chạy trong 4 giờ:
xuôi dòng 54km: 54/x và ngược dòng 42km: 42/y
=> ph trình: 54/x + 42/y = 4 (2)
từ (1) và (2) ta có hệ pt:
....
....
..... => x=27km/h
y=21km/h
Trả lời :
V xuôi : 27 km/giờ
V ngược 21 km/giờ
Hok tốt!
Một ca nô chạy xuôi dòng một khúc sông dài 60km, sau đó chạy ngược dòng 48km trên khúc sông đó thì hết 6 giờ. Nếu ca nô ấy chạy xuôi dòng 40 và ngược dòng 80km trên khúc sông đó thì hết 7 giwof. Tính vận tốc của ca nô và vận tốc dòng nước
Gọi vận tốc cano là x (km/h,x>0) và vận tốc dòng nước là y(km/h,y>0)
Vận tốc cano xuôi dòng là x+y(km/h)
Vận tốc cano ngược dòng là x-y(km/h)
thời gian cano xuôi dòng khúc sông 60km là \(\frac{60}{x+y}\)
Thời gian cano ngược dòng 48km là \(\frac{48}{x-y}\)
tổng thời gian là 6h nên ta có pt: \(\frac{60}{x+y}\)+\(\frac{48}{x-y}\)=6
Tưiong tự ta có pt \(\frac{40}{x+y}\)+\(\frac{80}{x-y}\)=7
Ta có hpt \(\hept{\begin{cases}\frac{60}{x+y}+\frac{48}{x-y}=6\\\frac{40}{x+y}+\frac{80}{x-y}=7\end{cases}}\)
Đặt ẩn phụ giải ra ta đc \(\hept{\begin{cases}x+y=20\\x-y=16\end{cases}}\)
nên x=18,y=2
kl
Một ca nô chạy trên sông trong 8h xuôi dòng được 81km và ngược dòng 105km. Một lần khác, ca nô chạy trên sông trong 4h xuôi dòng được 54km và ngược dòng 42km. Tính vận tốc riêng của ca nô.
A. 23 km/h
B. 25 km/h
C. 26 km/h
D. 24 km/h
Gọi vận tốc riêng của ca nô và vận tốc dòng nước lần lượt là x, y (km/h; x > y > 0)
Suy ra vận tốc xuôi dòng của ca nô là x + y(km/h); vận tốc ngược dòng là x – y (km/h)
Ca nô chạy trên sông trong 8h xuôi dòng được 81 km và ngược dòng 105 km nên ta có phương trình: 81 x + y + 105 x - y = 8 (1)
Ca nô chạy trên sông trong 4h xuôi dòng được 54km và ngược dòng 42km nên ta có phương trình: 54 x + y + 42 x - y = 4 (2)
Vậy vận tốc riêng của ca nô và vận tốc dòng nước lần lượt là 24 km/h và 3 km/h
Đáp án: D
Bài 2(3 điểm): Giải bài toán bằng cách lập phương trình Một ca nô chạy trên sông trong 8h, xuôi dòng 81 km và ngược dòng 105km. Một lần khác cũng chạy trên khúc sông đó, ca nô này chạy trong 4h, xuôi dòng 54km và ngược dòng 42km. Hãy tính vận tốc khi xuôi dòng và ngược dòng của ca nô, biết vân tốc dòng nước và vận tốc riêng của ca nô không đổi.
Một ca nô chạy xuôi dòng một khúc sông dài 60 km , sau đó chạy ngược dòng 48 km trên khúc sông đó thì hết 6 giờ . Nếu ca nô ấy chạy xuôi dòng 40 km và ngược dòng 80 km trên khúc sông đó thì hết 7 giờ . Tính vận tốc riêng của ca nô và vận tốc dòng nước .
Gọi \(a,b\) lần lượt là vận tốc riêng của ca nô và vận tốc dòng nước \(\left(a>b>0\right)\).
Thời gian ca nô đi xuôi dòng khúc sông \(60km\) là : \(\dfrac{60}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(48km\) là : \(\dfrac{48}{a-b}\left(h\right)\).
Theo đề bài thì \(\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\left(1\right)\).
Thời gian ca nô đi xuôi dòng \(40km\) là : \(\dfrac{40}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(80km\) là : \(\dfrac{80}{a-b}\left(h\right)\)
Cũng theo đề bài, ta có : \(\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\left(2\right)\).
Từ \((1)\) và \((2)\), ta có hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\\\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\end{matrix}\right.\left(I\right)\)
Đặt : \(x=\dfrac{20}{a+b}\) và \(y=\dfrac{16}{a-b}\). Hệ \((I)\) được viết lại thành :
\(\left\{{}\begin{matrix}3x+3y=6\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\2x+5y=7\end{matrix}\right.\)
Hay : \(\left\{{}\begin{matrix}5x+5y=10\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{20}{a+b}=1\\\dfrac{16}{a-b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=20\\a-b=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=36\\a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=18\\b=2\end{matrix}\right.\) (thỏa mãn).
Vậy : Vận tốc riêng của ca nô là \(18(km/h)\) và vận tốc dòng nước là \(2(km/h).\)
Gọi vận tốc riêng của cano là x (km/h) với x>0
Gọi vận tốc của dòng nước là y (km/h) với y>0 và y<x
Vận tốc cano khi xuôi dòng: \(x+y\) (km/h)
Vận tốc cano khi ngược dòng: \(x-y\) (km/h)
Do cano xuôi dòng 60km và ngược dòng 48km hết 6h nên ta có:
\(\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\)
Do cano xuôi dòng 40km và ngược dòng 80km thì hết 7h nên ta có:
\(\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\\\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{120}{x+y}+\dfrac{240}{x-y}=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{144}{x-y}=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=16\\\dfrac{120}{x+y}+\dfrac{96}{16}=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=16\\x+y=20\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=2\end{matrix}\right.\)
Một ca nô chạy trên sông trong 8h, xuôi dòng 81km và ngược dòng 105km.Một lần khác cũng chạy trên khúc sông đó, ca nô này chạy trong 4h, xuôi dòng 54km và ngược dòng 42km. Tính vận tốc dòng nước và vận tốc riêng của cano
Gọi x (km/h) là vận tốc riêng của cano.(x>0)
Gọi y (km/h) là vận tốc dòng nước.(y>0)
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}\frac{81}{x+y}+\frac{105}{x-y}=8\\\frac{54}{x+y}+\frac{42}{x-y}=4\end{cases}}\)
Giải ra ta được:
\(\hept{\begin{cases}x+y=27\\x-y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=24\\y=3\end{cases}}}\)
Vậy vận tốc riêng của cano là 24km/h.
Vận tốc dòng nước là 3km/h
một ca nô chạy xuôi dòng 1 khúc sông dài 121 km,sau đó chạy ngược dòng 96 km trên khúc sông đó,tính vận tốc riêng của ca nô , biết rằng vận tốc dòng nước là 4 km/h và thời gian ca nô chạy xuôi dòng ít hơn thời gian ca nô chạy ngược dòng là 1 h
Gọi vận tốc riêng của cano là \(x\left(km/h\right),x>4\).
Vận tốc khi cano đi xuôi dòng là: \(x+4\left(km/h\right)\).
Thời gian cano đi xuôi dòng là: \(\frac{120}{x+4}\left(h\right)\).
Vận tốc khi cano đi ngược dòng là: \(x-4\left(km/h\right)\).
Thời gian cano đi ngược dòng là: \(\frac{96}{x-4}\left(h\right)\).
Ta có phương trình:
\(\frac{96}{x-4}-\frac{120}{x+4}=1\)
\(\Rightarrow96\left(x+4\right)-120\left(x-4\right)=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+24x-880=0\)
\(\Leftrightarrow x=20\)(vì \(x>4\))
.
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.
Một ca nô xuôi dòng trên một khúc sông dài 60km, sau đó chạy ngược dòng 48km trên cùng khúc sông đó, cả xuôi và ngược hết 6 giờ. Nếu ca nô ấy chạy xuôi dòng 40km và ngược dòng 80km cũng trên khúc sông đó, cả xuôi và ngược thì hết 7 giờ. Tính vận tốc riêng của ca nô và vận tốc của dòng nước.
Mình cần lập bảng ạ
gọi vận tốc ca nô xuôi dòng là x+y(km/h)(x>0)
vận tốc ca nô ngược dòng là :x-y(km/h)(y>0)(x>y)
ta có hệ pt: \(\left\{{}\begin{matrix}\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\\\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\end{matrix}\right.\)
giải hệ pt trên bằng cách đặt\(\dfrac{1}{x+y}=a\) và \(\dfrac{1}{x-y}=b\)
=>\(\left\{{}\begin{matrix}60a+48b=6\\40a+80b=7\end{matrix}\right.\) giải hệ pt này =>\(\left\{{}\begin{matrix}a=\dfrac{1}{20}\\b=\dfrac{1}{16}\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{20}\\\dfrac{1}{x-y}=\dfrac{1}{16}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=20\\x-y=16\end{matrix}\right.< =>\left\{{}\begin{matrix}x=18\left(TM\right)\\y=2\left(TM\right)\end{matrix}\right.\)
vậy vận tốc riêng ca nô là 18km/h , vận tốc dòng nước là 2km/h
Một ca nô chạy trên 1 khúc sông từ bến A đến bến B. Khi đi xuôi dòng ca nô thì mất 5h, khii đi ngược dòng ca nô thì mất 6h , biết vận tốc ca nô xuôi dòng hơn vận tốc ca nô ngược dòng là 6km/h . tính khoảng cách từ bến A đến bến B
Gọi quãng AB là : x
Vận tốc lúc xuôi dòng là : \(\frac{x}{5}\) km/h
Vận tốc lúc ngược là : \(\frac{x}{6}\)km/h
Theo bài ra ta có : \(\frac{x}{5}-\frac{x}{6}=6\)
\(\Leftrightarrow6x-5x=180\)
x = 180
Vậy AB dài 180 km