Những câu hỏi liên quan
KL
Xem chi tiết
RR
13 tháng 5 2018 lúc 21:55

 +)  Nếu x,y,z khác số dư khi chia cho 3

    - Nếu có 2 số chia hết cho 3 . Số còn lại không chia hết cho 3 . Giả sử x,y đều chia hết cho 3, z không chia hết cho 3 =>x+y+z không chia hết cho 3. Do x,y đều chia hết cho 3 nên (x−y)⋮3 => (x−y)(y−z)(z−x) ⋮3  (Vô lý do (x−y)(y−z)(z−x)=x+y+z(x−y)(y−z)(z−x)=x+y+z)

    - Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.

Vậy cả 3 số có cùng số dư khi chia cho 3 => (x−y)⋮3 , (y−z)⋮3 , (z−x)⋮3 => (x−y)(y−z)(z−x)⋮27 => (x+y+z)⋮27

Bình luận (0)
BO
Xem chi tiết
LD
3 tháng 4 2018 lúc 22:14

- Nếu x,y,z khác số dư khi chia cho 3

+ Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x, y đều chia hết cho 3, z không chia hết cho 3

=> x + y + z không chia hết cho 3. Do x, y đều chia hết cho 3 nên (x−y)⋮3

=> (x − y)(y − z)(z − x)⋮3 (Vô lý do (x − y)(y − z)(z − x) = x + y + z )

+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.

Vậy cả 3 số có cùng số dư khi chia cho 3

=>(x − y)⋮3;(y − z)⋮3;(z − x)⋮3

=>(x − y)(y − z)(z − x)⋮27

=> x + y + z⋮27

Bình luận (0)
NT
Xem chi tiết
BY
Xem chi tiết
BY
Xem chi tiết

Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc 

Sử dụng tính chất trên ta được : 

( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x ) 

Nếu x ,y, z có cùng số dư khi chia cho 3 => 

x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết ) 

=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 27

,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3 

=> ( x -y )(y -z )( z -x ) ko chia hết cho 3 

Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2 

=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý ) 

Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y 

=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3 

1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 27 

2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 27 

3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 27

Tóm lại 3( x -y )(y -z )( z -x ) :/ 27 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 27

tích nha

Bình luận (0)
JD
2 tháng 4 2016 lúc 20:02

cau kia tra loi dung roi cau a

Bình luận (0)
PQ
Xem chi tiết
H24
25 tháng 8 2017 lúc 12:34

ta có: 

Từ x/3 = y/4 => x/9 = y/12 (1) 

Từ y/3 = z/5 => y/12 = z/20 (2) 

Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20 

Áp dụng TC DTS BN ta có: 

2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3 

Từ 2x/18 = 3 => x = 27 

Từ 3y/36 = 3 => y = 36

Từ x/20 = 3 => z = 60

Bình luận (0)
PQ
25 tháng 8 2017 lúc 12:41

chia hết cho 27 nhé

Bình luận (0)
VF
25 tháng 8 2017 lúc 12:51

OoO_Nhok_Lạnh_Lùng_OoO: nhìn mấy thg như m` ngứa mắt vc, ko làm thì cút hộ đây ko phải web kiếm ăn

Bình luận (0)
TP
Xem chi tiết
BM
Xem chi tiết
DN
Xem chi tiết
MH
22 tháng 5 2019 lúc 18:25

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Bình luận (0)
MH
22 tháng 5 2019 lúc 18:25

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Bình luận (0)
MH
22 tháng 5 2019 lúc 18:25

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Bình luận (0)