Cho tam giác ABC, trung tuyến BM, CN vuông góc với nhau
CM \(^{cotB+cotC\ge\frac{2}{3}}\)
Cho tam giác ABC có 3 góc nhọn và các trung tuyến BM và CN vuông góc với nhau. Chứng minh: \(cotC+cotB\ge\dfrac{2}{3}\)
Kẻ đg cao AH, trung tuyến AD, trọng tâm G
Tg AHD vuông tại H nên \(AH\le AD\Rightarrow\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(4\right)\)
Ta có \(\cot\widehat{B}+\cot\widehat{C}=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(1\right)\)
Mà BM vuông góc CN nên GD là trung tuyến ứng vs ch BC
\(\Rightarrow BC=2GD\left(2\right)\)
Mà G là trọng tâm nên \(3GD=AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Rightarrow\cot\widehat{B}+\cot\widehat{C}\ge\dfrac{BC}{AD}=\dfrac{2GD}{3GD}=\dfrac{2}{3}\)
Cho tam giác ABC có góc A và B nhọn, các đường trung tuyến BM và CN vuông góc với nhau .
CMR: cotB + cotC\(\ge\)\(\frac{2}{3}\)
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC)
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB+cotC)
Giúp mình với!!!!!
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB+cotC)
Giúp mình với!!!!!
1. Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC)
2. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A có H là trung điểm của BC, D là hình chiếu vuông góc của H trên AC và M là trung điểm HD. Đường thẳng BD đi qua E(0;4) và AC đi qua điểm F(-1;5). Tìm tọa độ các đỉnh A, B, C biết đường thẳng AM có phương trình x - 3y + 14 = 0 và A có hoành độ âm
ai giúp dc mik mik tik cho
Cho tam giác ABC nhọn.Với AB=c,BC=a,CA=b.Các trung tuyến BM và CN vuông góc với nhau.Chứng minh rằng
a,\(a^2=b^2+c^2+2bc.cos A\)
b,\(CotB+CotC\ge\dfrac{2}{3}\)
c,\(CotA\ge\dfrac{4}{3}\)
làm dc đến đâu thì làm mik tik hết nha
Cho tâm giác ABC nhọn, có các trung tuyến BM, CN vuông góc với nhau.
a) Cmr: cotB + cotC >= 2/3
b) Tìm hệ thức thể hiện mối quan hệ 3 cạnh của tam giác
Theo bạn thì câu trả lời sẽ là bao nhiêu? Cách giải thứ nhất là cộng kết quả hàng trên với số đầu hàng dưới lại, chúng ta sẽ có kết quả hàng dưới (1 + 4 = 5, 5 + 2 + 5 = 12,...), cứ thế, ta sẽ có con số cuối cùng là 40.
Tuy nhiên vẫn còn một cách giải khác, đó là nhân số thứ hai trong phép tính với số đầu rồi tiếp tục cộng thêm số đầu (4 x 1 + 1 = 5, 5 x 2 + 2 = 12...), nếu tính theo cách này thì đáp án cuối sẽ là 96.
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
cho tam giác ABC . BM,CN lần lượt là accs đường trung tuyến . CMR các điều sau là tương đương
1) BM vuông góc với CN
2) AC2 + AB2= 5BC2
3) cotA= 2(cotB + cotC)