bài 1
C=1+3+3^2+3^3+...+3^11
. Dãy số nào được xếp theo thứ tự từ bé đến lớn:
A. 1; 5/4 ; 6/4 ;9/4 ;3/4 B.2/3 ; 2/4 ; 2/5 ; 1
C. 11/12 ; 11/16; ; 11/9 D. 1/3 ; 2/3 ; 1 ; 4/3
Bài 1. Giải phương trình
b) (x - 3)(x - 5) = x ^ 2 - 1
c) x ^ 3 + x ^ 3 - x ^ 2 - 1 = 0
Bài `1:`
`b)`
`(x-3).(x-5)=x^{2}-1`
`<=>x^{2}-5x-3x+15=x^{2}-1`
`<=>x^{2}-8x+15-x^{2}+1=0`
`<=>-8x+16=0`
`<=>-8x=-16`
`<=>x=2`
Vậy `S={2}`
`c)`
`x^{3}+x^{3}-x^{2}-1=0`
`<=>2x^{3}-x^{2}-1=0`
`<=>2x^{3}-2x^{2}+x^{2}-1=0`
`<=>2x^{2}.(x-1)+(x-1).(x+1)=0`
`<=>(x-1).(2x^{2}+x+1)=0`
Ta có:
`2x^{2}+x+1`
`=2.(x^{2}+1/2x+ 1/2)`
`=2.[x^{2}+2.x. 1/4+(1/4)^{2}+7/16]`
`=2.[(x+1/4)^{2}+7/16]`
`=2.(x+1/4)^{2}+7/8`
Ta có:
`(x+1/4)^{2}\ge0AAx`
`=>2.(x+1/4)^{2}\ge0AAx`
`=>2(x+1/4)^{2}+7/8>0AAx`
`=>x-1=0`
`<=>x=1`
Vậy `S={1}`
`@Nae`
Bài 4. Tìm x, biết:
a) (2x + 1)^2 - 4(x + 2)^2 = 9
b) (x + 3)^2 - (x - 4)( x + 8) = 1
c) 3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
\(a,\left(2x+1\right)^2-4\left(x+2\right)^2=9\\ \Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\\ \Leftrightarrow4x^2-4x^2+4x-16x+1-16-9=0\\ \Leftrightarrow-12x=24\\ \Leftrightarrow x=\dfrac{24}{-12}=-2\\ b,\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\\ \Leftrightarrow x^2+6x+9-\left(x^2+4x-32\right)=1\\ \Leftrightarrow x^2-x^2+6x-4x=1-9-32\\ \Leftrightarrow2x=-40\\ \Leftrightarrow x=-20\\ c,3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\\ \Leftrightarrow3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\\ \Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\\ \Leftrightarrow3x^2+4x^2-7x^2+12x-4x=36-12-1-63\\ \Leftrightarrow8x=-40\\ \Leftrightarrow x=\dfrac{-40}{8}=-5\)
bài 1: giải phương trình
a, \(\dfrac{-3}{x^2-9}\)+ \(\dfrac{5}{3-x}\)=\(\dfrac{2}{x+3}\)
b, \(\left|x+5\right|\) = 2x-1
c, \(^{x^4}\)- \(^{x^3}\)+2\(^{x^2}\)-x + 1 = 0
a. \(\dfrac{-3}{x^2-9}+\dfrac{5}{3-x}=\dfrac{2}{x+3}\)
<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5}{x-3}=\dfrac{2}{x+3}\)
<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5\left(x+3\right)}{x^2-9}=\dfrac{2\left(x-3\right)}{x^2-9}\)
<=> \(-3+\left(-5\right)\left(x+3\right)=2\left(x-3\right)\)
<=> -3 + (-5x) + (-15) = 2x - 6
<=> -5x -2x = 15 - 6 + 3
<=> -7x = 12
<=> x = \(\dfrac{-12}{7}\)
Vậy ........
b. \(\left|x+5\right|=2x-1\)
Nếu x \(\ge\) -5 => \(\left|x+5\right|\) = x + 5
Nếu x < -5 => \(\left|x+5\right|\) = -(x + 5)
TH1: Nếu x \(\ge\) -5
<=> x + 5 = 2x - 1
<=> x - 2x = -1 - 5
<=> -x = -6
<=> x = 6
TH2: Nếu x < -5
<=> -(x + 5) = 2x - 1
<=> -x - 5 = 2x - 1
<=> -5 + 1 = 2x + x
<=> -4 = 3x
<=> x = \(\dfrac{-4}{3}\)
Vậy .........
c. Bạn tự giải câu này nhé (có thể tách các hạng tử rồi tính)
Câu 22. Kết quả phép tính (2/3 - 3/2) : 4/3 + 1/2
A.1/8
B.-1/8
C.9/8
D.Kết quả khác
Câu 23.Kết quả phép tính (2 + -7/13) + -6/13
A.1
B.-1
C.-11/13
D.Kết quả khá
bài 1
a)(x-1)(x+2)-(x-3)(x+1)=5x-3
b)(2x-1)(x+3)-(x-2)(x+2)=3x+1
c)x^2(x-1)-x(x-1)(x+1)=0
d)4x(x-5)-(2x-3)(2x+3)=9
Lời giải:
a.
a. $(x-1)(x+2)-(x-3)(x+1)=5x-3$
$\Leftrightarrow (x^2+x-2)-(x^2-2x-3)=5x-3$
$\Leftrightarrow 3x+1=5x-3$
$\Leftrightarrow 4=2x$
$\Leftrightarrow x=2$
b.
$(2x-1)(x+3)-(x-2)(x+3)=3x+1$
$\Leftrightarrow (2x^2+5x-3)-(x^2-4)=3x+1$
$\Leftrightarrow x^2+5x+1=3x+1$
$\Leftrightarrow x^2+2x=0$
$\Leftrightarrow x(x+2)=0$
$\Leftrightarrow x=0$ hoặc $x=-2$
c.
$x^2(x-1)-x(x-1)(x+1)=0$
$\Leftrightarrow x^2(x-1)-(x^2+x)(x-1)=0$
$\Leftrightarrow (x-1)[x^2-(x^2+x)]=0$
$\Leftrightarrow (x-1)(-x)=0$
$\Leftrightarrow x-1=0$ hoặc $-x=0$
$\Leftrightarrow x=1$ hoặc $x=0$
d.
$4x(x-5)-(2x-3)(2x+3)=9$
$\Leftrightarrow 4x^2-20x-(4x^2-9)=9$
$\Leftrightarrow -20x=0$
$\Leftrightarrow x=0$
a: Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-3\right)\left(x+1\right)=5x-3\)
\(\Leftrightarrow x^2+2x-x-2-x^2-x+3x+3-5x+3=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow2x=4\)
hay x=2
b: Ta có: \(\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=3x+1\)
\(\Leftrightarrow2x^2+6x-x-3-x^2+4-3x-1=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c: Ta có: \(x^2\left(x-1\right)-x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d: Ta có: \(4x\left(x-5\right)-\left(2x-3\right)\left(2x+3\right)=9\)
\(\Leftrightarrow4x^2-20x-4x^2+9=9\)
hay x=0
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
Bài 3:
a) \(\dfrac{2x-1}{5}\)-\(\dfrac{x-2}{3}\)
=\(\dfrac{x+7}{15}\)
b) \(\dfrac{x+3}{2}\)-\(\dfrac{x-1}{3}\)
=\(\dfrac{x+5}{6}\)+1
c) \(\dfrac{2\left(x+5\right)}{3}\)+\(\dfrac{x+12}{2}\)
-\(\dfrac{5\left(x-2\right)}{6}\)=\(\dfrac{x}{3}\)+11
d) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x
=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)
e) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)
=\(\dfrac{\left(x-4^{ }\right)^2}{6}\)+\(\dfrac{\left(x-2\right)^2}{3}\)
d) \(\dfrac{7x^2-14x-5}{15}\)
=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)
e) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)
=\(\dfrac{\left(x-2\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-3\right)}{2}\)
a) Ta có: \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
\(\Leftrightarrow6x-3-5x+10-x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
1C/M biểu thức sau ko phụ thuộc vào giá trị của biến :
C=(2a-2).(2a+3)-a(3+4a)+3a+1
2 Tìm x bik:
(x+3).(x-1)-x(x-5)=11
1
C = ( 2a - 2 ) (2a + 2 ) - a ( 3 + 4a ) + 3a + 1
C = 4a2 - 4 - 3a - 4a2 + 3a + 1
C = -3 ko phụ thuộc của x
2. ( x + 3 ) ( x - 1 ) - x ( x - 5 ) = 11
( x2 + 3x - x - 3 ) - x2 + 5x = 11
7x = 14
x = 2
\(C=\left(2a-2\right)\left(2a+3\right)-a\left(3+4a\right)+3a+1\)
\(\Leftrightarrow C=2a\left(2a-2\right)+3\left(2a-2\right)-3a-4a^2+3a+1\)
\(\Leftrightarrow C=4a^2-4a+6a-6-3a-4a^2+3a+1\)
\(\Leftrightarrow C=\left(4a^2-4a^2\right)+\left(3a-3a\right)+\left(6a-4a\right)+\left(1-6\right)\)
\(\Leftrightarrow C=0+0+2a-5\)
\(\Leftrightarrow C=2a-5\)
Vậy giá trị của C phụ thuộc vào giá trị của biến
๖ۣۜK-๖ۣۜA๖L๖ۣۜ♡K♡ (Team TST 9) đề cm ko phụ thuộc vào GT biến mà. mà bạn phải đọc lại đề mà sửa chứ
Bài 3: Tính
1 + 5 =
2 + 3 =
3 + 6 =
4 + 5 =
5 + 1 =
6 + 2 =
7 + 1 =
8 + 1 =
9 + 0 =
10 + 2=
11 + 2 =
1 + 3 =
2 + 6 =
3 + 7 =
4 + 2 =
5 + 2 =
6 + 3 =
7 + 3 =
8 + 2 =
9 + 1 =
10 + 0 =
11 + 3 =
1 + 4 =
2 + 8 =
3 + 2 =
4 + 1 =
5 + 4 =
6 + 4 =
7 + 2 =
8 + 0 =
9 + 2 =
10 + 6 =
11 + 6 =
Bài 4: Tính
6 - 2 =
3 - 1 =
4 - 2 =
5 - 2 =
8 - 5 =
10 - 6 =
4 - 3 =
3 - 3 =
5 - 1 =
2 - 2 =
3 - 1 =
4 - 1 =
2 - 1 =
4 - 3 =
5 - 0 =
9 - 4 =
8 - 6 =
7 - 3 =
8 - 4 =
7 - 6 =
9 - 5 =
7 - 7=
5 - 3 =
5 - 3=
6 - 3 =
7 - 3 =
7 - 6 =
6 - 5 =
9 - 7 =
9 - 3 =
8 - 8 =
8 - 0 =
5 - 3 =
Bài 5: Tính
6 - 2 =
5 + 2 =
9 - 5 =
2 + 0 =
8 + 2 =
4 - 4 =
7 - 3 =
3 + 6 =
7 + 2 =
9 - 5 =
3 + 6 =
1 + 5 =
7 - 6 =
7 + 1 =
3 + 5 =
2 - 1 =
6 + 3 =
5 + 2 =
9 - 4 =
6 + 4 =
4 + 2 =
6 + 1=
7 - 7=
4 + 3 =
7 + 3 =
5 - 2 =
6 - 5 =
8 - 6 =
6 - 4 =
7 - 3 =
10 + 0 =
5 +4 =
8 - 2 =