B=2X^2+2XY+5Y^2-8X-22Y.
Tìm GTNN hoặc GTLN của biểu thức B
Tìm GTNN hoặc GTLN của các biểu thức sau
B=4x^2+8x
C=-2x^2+8x-15
B = 4x2 + 8x
= 4( x2 + 2x + 1 ) - 4
= 4( x + 1 )2 - 4
4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinB = -4 <=> x = -1
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Tìm GTLN hoặc GTNN của biểu thức
B = 2x2 + 8x + 1
\(B=2x^2+8x+1\)
\(=2\times\left(x^2+2\times x\times2+2^2-2^2+\frac{1}{2}\right)\)
\(=2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\)
\(\left(x+2\right)^2\ge0\)
\(\left(x+2\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)
\(2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\ge-7\)
Vậy Min B = -7 khi x = -2
Tìm GTNN và GTLN của biểu thức
\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}\)
\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}=1+\frac{\left(x-2y\right)^2}{x^2+2xy+5y^2}=\frac{17}{4}-\frac{1}{3}.\frac{\left(3x+7y\right)^2}{x^2+2xy+5y^2}\)
\(\Rightarrow\hept{\begin{cases}min_P=1\\max_P=\frac{17}{4}\end{cases}}\)
Bài 1:Tìm GTNN của biểu thức:
P=x^2+2xy+3y^2+5y+10
Bài 2:Tìm GTLN của biểu thức:
P=4/2x^2 +2xy+y^2+5x+20
2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)
\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)
Để P đạt GTLN
=> Mẫu thức đạt GTNN
mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)
Thay x = -5/2 và y = 5/2 vào P
Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)
Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2
1) Ta có P = x2 + 2xy + 3y2 + 5y + 10
= (x2 + 2xy + y2) + (2y2 + 5y + 10)
= \(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)
= \(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)
Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4
Tìm GTNN của biểu thức \(D=2x^2+2xy+5y^2-8x-22y\)
\(D=\frac{1}{2}\left(4x^2+4xy+y^2+16-16x-8y\right)+\frac{9}{2}\left(y^2-4y+4\right)-26\)
\(D=\frac{1}{2}\left(2x+y-4\right)^2+\frac{9}{2}\left(y-2\right)^2-26\ge-26\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Tìm GTLN của biểu thức:
-2x^2 - y^2 - 2xy + 4x + 2y + 2
Tìm GTNN của biểu thức:
x^2 - 4xy + 5y^2 + 10x - 22y + 27
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
Tìm GTNN của biểu thức sau :
D = \(2x^2+2xy+5y^2-8x-22y\)
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20