Tìm số hữu tỉ x biết
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
Tìm số hữu tỉ x, biết: \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
.............................................................................................................................................................................................????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????.....................................................................................................................................................................?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Tìm số hữu tỉ x biết
\(\left(2x-1\right)^2=\left(2x-1\right)^6\)
Giúp mình với đang vội lắm !
(2x-1)2 = (2x-1)6
(2x-1)2 - (2x-1)6 = 0
(2x-1)2 x (1-(2x-1)4) = 0
=> 2x-1 = 0 <=> x=1/2
=> 2x-1=1 <=> x=1
vội cũng phải cho mik nha
cái này thì mình ko biết rõ cách làm kết quả là 0 hoặc 1
Ns thiệt nha thik ai chứ thik CHELSEA mik hơi bị hate
Nhưng mà mik agree help bn lun
Biểu thức căn 2 =nhau khi và chỉ khi
1^2=1^6
hoặc
0^2=0^6
và cả trường hợp âm nữa nhé
\(\left(2x-1\right)^2=\left(2x-1\right)^6\)
\(\Rightarrow2x-1=0\Rightarrow x=0,5\)
\(\Rightarrow2x-1=1\Rightarrow x=1\)
\(\Rightarrow2x-1=-1\Rightarrow x=0\)
\(\Rightarrow x\in\left\{0,5,0;1\right\}\)
Tìm số hữu tỉ x
\(\left(2x+1\right)^5=\left(2x+1\right)^{2010}\)
\(\left(2x+1\right)^5=\left(2x+1\right)^{2010}\)
\(\Rightarrow\left(2x+1\right)^{2010}-\left(2x+1\right)^5=0\)
\(\Rightarrow\left(2x+1\right)^5.\left[\left(2x+1\right)^{2005}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x+1\right)^5=0\\\left(2x+1\right)^{2005}-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^{2005}=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x+1=0\\2x+1=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x=-1\\2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
(2x+1)5=(2x+1)2010
=> 2x+1=1 hoặc 2x+1=0
=>2x=0 hoặc 2x=1
=>x=0 hoặcx=0,5
(2x+1)^5=(2x+1)^2010 =>(2x+1)^2010 - (2x+1)^5=0
=>(2x+1)^5 * ((2x+1)^2010-1) = 0
=>2x+1=0 hoặc 2x+1=1
=>x=-1/2 hoặc x=0
vậy x=-1/2 hoặc x=0
Tìm nguyên làm các hàm số hữu tỉ sau :
a)
\(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)}dx\)
b) \(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx\)
a) \(f\left(x\right)=\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x}=\frac{Ax\left(x+2\right)+Bx\left(x-1\right)+C\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)x}\)
Bằng cách thay các nghiệm thực của mẫu số vào hai tử số, ta có hệ :
\(\begin{cases}x=1\rightarrow18=3A\Leftrightarrow A=6\\x=-2\rightarrow18=6B\Leftrightarrow B=3\\x=0\rightarrow12=-2C\Leftrightarrow=-6\end{cases}\) \(\Rightarrow f\left(x\right)=\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\)
Vậy : \(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}dx=\int\left(\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\right)dx=6\ln\left|x-1\right|+3\ln\left|x+2\right|-6\ln\left|x\right|+C\)
b) \(f\left(x\right)=\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-4}\)
\(=\frac{A\left(x-2\right)\left(x-4\right)+B\left(x-1\right)\left(x-4\right)+C\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}\)
Bằng cách thay các nghiệm của mẫu số vào hai tử số ta có hệ :
\(\begin{cases}x=1\rightarrow9A=3\Leftrightarrow x=3\\x=2\rightarrow14=-2B\Leftrightarrow x=-7\\x=4\rightarrow30=6C\Leftrightarrow C=5\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{3}{x-1}-\frac{7}{x-2}+\frac{5}{x-4}\)
Vậy :
\(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx=\)\(\int\left(\frac{3}{x-1}+\frac{7}{x-2}+\frac{5}{x-4}\right)dx\)=\(3\ln\left|x-1\right|-7\ln\left|x-2\right|+5\ln\left|x-4\right|+C\)
Tìm các số nguyên x sao cho tích của 2 số hữu tỉ \(-\dfrac{3}{x-1};\dfrac{x-2}{2}\) là một số nguyên
Giải :
Ta có :
\(-\dfrac{3}{x-1}.\dfrac{x-2}{2}=\dfrac{-3\left(x-2\right)}{\left(x-1\right).2}=\dfrac{-3x+6}{2x-2}\)
\(\dfrac{-3x+6}{2x-2}\) là một số nguyên khi \(-3x+6⋮2x-2\)
\(\Leftrightarrow2\left(-3x+6\right)+3\left(2x-2\right)⋮2x-2\\ \Leftrightarrow-6x+12+6x-6⋮2x-2\\ \Leftrightarrow\left(-6x+6x\right)+\left(12-6\right)⋮2x-2\\ \Leftrightarrow6⋮2x-2\\ \Leftrightarrow2x-2\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\\ \Leftrightarrow2x\in\left\{3;1;4;0;5;-1;8;-4\right\}\\ \Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
??????????????????
Thick thể hiện à
haizzzz
tìm số hữu tỉ x biết :
a)|1-2x|>7
b)\(\frac{-5}{x-3}< 0\)
c)\(\left(x-2\right)\left(x+2\right)\left(4-x\right)\left(x-1\right)^2\) \(\le0\)
a/ \(\left|1-2x\right|>7\Leftrightarrow\left[{}\begin{matrix}1-2x=7\\1-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x< -6\\2x< 8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\)
b/ \(\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\) ( vì -5<0)
\(\Leftrightarrow x>3\)
Tìm x biết
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
x=1 và 0
ms thỏa mản đề ra
=)))))))))))))))
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x-1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
Bài 1 : Tìm GTNN của : \(A=\left|x+8\right|+\left|2x+7\right|+\left|3x+6\right|+\left|4x-7\right|+\left|3x-6\right|+\left|2x-7\right|+\left|x-8\right|-100\)
Tìm nguyên hàm các hàm số hữu tỉ sau :
a) \(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx\)
b) \(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx\)
a) Mẫu số chứa các biểu thức có nghiệm thực và không có nghiệm thực.
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\left(1\right)\)
Tay x=1 vào 2 tử, ta có : 2=2A, vậy A=1
Do đó (1) trở thành :
\(\frac{1\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(B+1\right)x^2+\left(C-B\right)x+1-C}{\left(x-1\right)\left(x^2+1\right)}\)
Đồng nhất hệ số hai tử số, ta có hệ :
\(\begin{cases}B+1=1\\C-B=2\\1-C=-1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}B=0\\C=2\\A=1\end{cases}\)\(\Rightarrow\)
\(f\left(x\right)=\frac{1}{x-1}+\frac{2}{x^2+1}\)
Vậy :
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\int\frac{1}{x-1}dx+2\int\frac{1}{x^2+1}=\ln\left|x+1\right|+2J+C\left(2\right)\)
* Tính \(J=\int\frac{1}{x^2+1}dx.\)
Đặt \(\begin{cases}x=\tan t\rightarrow dx=\left(1+\tan^2t\right)dt\\1+x^2=1+\tan^2t\end{cases}\)
Cho nên :
\(\int\frac{1}{x^2+1}dx=\int\frac{1}{1+\tan^2t}\left(1+\tan^2t\right)dt=\int dt=t;do:x=\tan t\Rightarrow t=arc\tan x\)
Do đó, thay tích phân J vào (2), ta có :
\(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\ln\left|x-1\right|+arc\tan x+C\)
b) Ta phân tích
\(f\left(x\right)=\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}+\frac{D}{x+3}\)\(=\frac{A\left(x+3\right)+B\left(x-1\right)\left(x+3\right)+C\left(x-1\right)^2\left(x+3\right)+D\left(x-1\right)^3}{\left(x-1\right)^3\left(x+3\right)}\)
Thay x=1 và x=-3 vào hai tử số, ta được :
\(\begin{cases}x=1\rightarrow2=4A\rightarrow A=\frac{1}{2}\\x=-3\rightarrow10=-64D\rightarrow D=-\frac{5}{32}\end{cases}\)
Thay hai giá trị của A và D vào (*) và đồng nhất hệ số hai tử số, ta cso hệ hai phương trình :
\(\begin{cases}0=C+D\Rightarrow C=-D=\frac{5}{32}\\1=3A-3B+3C-D\Rightarrow B=\frac{3}{8}\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\)
Vậy :
\(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx=\)\(\left(\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\right)dx\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|x-1\right|-\frac{5}{32}\ln\left|x+3\right|+C\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|\frac{x-1}{x+3}\right|+C\)