Tìm nghiệm nguyên dương của phương trình 4x+4y+10=5xy
Tìm nghiệm nguyên dương của phương trình : 4x + 4y + 10 = 5xy
\(pt\Leftrightarrow20x+20y+50=25xy\)
\(\Leftrightarrow5y\left(5x-4\right)-4\left(5x-4\right)=66\)
\(\Leftrightarrow\left(5x-4\right)\left(5y-4\right)=66\)
đến đây thì dễ rồi
Tìm nghiệm nguyên dương của phương trình sau \(4x^2-4xy+4y^2=16\)
\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)
\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)
\(\Rightarrow y^2\le\dfrac{16}{3}\)
\(\Rightarrow y^2=\left\{1;4\right\}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)
- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;2\right)\)
Ta có: 4x2-4xy+4y2=16
⇔ (2x-y)2+3y2=16 (1)
Vì (2x-y)2≥0 ⇒ 3y2≤16
⇔ \(y^2\le\dfrac{16}{3}\)
⇔ y2={1;4} ⇔ y={1;2}
- Với y=1 ⇔ (2x-1)2 = 13 (loại do x nguyên dương)
- Với y=2 ⇔ (2x-2)2 = 4 \(\Leftrightarrow\left[{}\begin{matrix}2x-2=2\\2x-2=-2\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(loại\right)\end{matrix}\right.\)
Vậy (x;y)=(2;2)
tìm nghiệm nguyên dương của phương trình
\(x^2-y^2+2x-4y-10=0\)
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)
\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)
\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)
Ta có bảng GT:
x+y+3 | 1 | 5 | -1 | -5 |
x-y-1 | 5 | 1 | -5 | -1 |
x | 2 | 2 | -4 | -4 |
y | -4 | 0 | 0 | -4 |
Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)
x,y nguyên dương là:
=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)
giải phương trình nghiệm nguyên : x-5xy-4y=3
Tìm nghiệm nguyên dương của phương trình $(x+2y)(3x+4y)=96$.
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
ta có 96=6.16
xy là các số nguyên nên 3x+4y>x+2y
do đó xy là các nghiệm nguyên dương của phương trình khi
3x+4y+16
x+2y=6
giẢI hệ ta được x=4 y=1
vậy nghiệm của phương trình là (4,1)
Tìm nghiệm nguyên x,y của phương trình: a) 4x⁴+4x²+40=4y²-4xy b) x+y+xy=x²+y²
Tìm nghiệm nguyên dương của phương trình: \(2\left(x^2+y^2\right)=6y-3x+5xy-7\)
Tìm nghiệm nguyên của phương trình 3x^2+4y^2+4x+3y-4=0
Giai phương trình nghiệm nguyên:
4x+4y+10=5xy
tớ phân tích được:
(4-5y)(5x-4)=-66
nhưng không biết nhận xét để rút bớt nghiệm mong các cậu giúp đỡ
À nếu có cách khác thì chỉ tớ với nhé
pt⇔20x+20y+50=25xy
⇔5y(5x-4)-4(5x-4)=66
⇔(5x-4)(5y-4)=66
dễ rồi nhé