Tìm x, y \(\in\)N, biết: 25 - y2 = 8 . ( x - 2017 )2
Tìm x, y \(\in\)N, biết: 25 - y2 = 8 . ( x - 2017 )2
Lời giải:
Ta thấy $25-y^2=8(x-2017)^2\geq 0$
$\Rightarrow 25\geq y^2$
$\Rightarrow 5\geq y$ (1)
Mặt khác: $25-y^2=8(x-2017)^2$ là số chẵn, do đó $y^2$ lẻ, kéo theo $y$ lẻ (2)
Từ $(1);(2)$ suy ra $y$ có thể nhận giá trị $y=1; 3;5$
Với $y=1$ thì $8(x-2017)^2=25-1^2=24$
$\Rightarrow (x-2017)^2=3$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=3$ thì $8(x-2017)^2=25-3^2=16$
$\Rightarrow (x-2017)^2=2$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=5$ thì $8(x-2017)^2=25-y^2=0$
$\Rightarrow (x-2017)^2=0\Rightarrow x=2017$
Vậy $(x,y)=(2017, 5)$
tìm x, y thuộc N, biết 25-y^2=8(x-2017)^2
tìm x y thuộc N biết: 25-y^2 = 8.(x-2017)^2
y<=5
y phải lẻ
với y=5=> x=2017
với y=3=> 16=8.(x-1017)^2 loại k có x nguyen
y=5; x=2017 duy nhất......
Tìm x;y ϵ N biết:25-y2=8(x-2017)2
sua lai bai cua minh
Neu \(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay \(25=8\left(x-2017\right)^2+y^2\\ =>25=8+y^2\\ =>y^2=17\left(loai\right)\)(do x;y \(\in N\))
Vay \(x=2017;y=5\)
Ta co
\(25-y^2=8\left(x-2017\right)^2\\ =>25=8\left(x-2017\right)^2+y^2\)
Do
\(8\left(x-2017\right)^2\le25\\ =>\left(x-2017\right)^2\le\frac{25}{8}\)
\(=>\left(x-2017\right)^2\in\left\{0;1\right\}\)
Neu
\(\left(x-2017\right)^2=0\\ x-2017=0\\ x=2017\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=y^2\\ =>y=5\)
Neu
\(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=1+y^2\\ =>y^2=24\)(loai do x;y \(\in N\))
Vay x=2017 ; y=5
Neu (x−2017)2=1=>x−2017=1=>x=2018(x−2017)2=1=>x−2017=1=>x=2018
Vay 25=8(x−2017)2+y2=>25=8+y2=>y2=17(loai)25=8(x−2017)2+y2=>25=8+y2=>y2=17(loai)(do x;y ∈N∈N)
Vay x=2017;y=5
Tìm tất cả các cặp số nguyên x, y thỏa mãn:
8|x - 2017| = 25 - y2
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
Tìm x,y biết: 25 - y2 = 8 ( x - 2012 )2
$x,y$ là số nguyên hay có điều kiện gì không bạn nhỉ?
tìm số nguyên x,y biết 25-y2=8(x-2021)2
Tìm x,y ϵ Z biết: 25-y2=8(x-2022)2
đk đã cho \(\Leftrightarrow\)\(8\left(x-2022\right)^2+y^2=25\) (1)
Vì \(\left(x-2022\right)^2\ge0;y^2\ge0\) nên (1) suy ra:
\(8\left(x-2022\right)^2\le25\)
\(\Leftrightarrow\left(x-2022\right)^2\le\dfrac{25}{8}\)
Do \(x\inℤ\) nên suy ra \(\left(x-2022\right)^2\le3\)
\(\Rightarrow x-2022\in\left\{0;\pm1;\pm2;\pm3\right\}\)
\(\Rightarrow x\in\left\{2022;2023;2021;2024;2020;2025;2019\right\}\)
Nếu \(x=2022\Rightarrow y=\pm5\)
Nếu \(x\in\left\{2021;2023\right\}\) thì \(y^2=17\), vô lý.
Nếu \(\left|x-2022\right|\ge2\) thì \(8\left(x-2022\right)^2\ge32\) \(\Leftrightarrow25-y^2\ge32\) \(\Leftrightarrow y^2\le-7\), vô lý.
Vậy có các cặp số (x; y) sau thỏa mãn:
\(\left(2022;5\right),\left(2022;-5\right)\)
Do (x - 2022)² ≥ 0 với mọi x R
8(x - 2022)² ≥ 0 với mọi x R
25 - y² ≥ 0
y² ≤ 25
⇒ y ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}
Do x, y ∈ Z nên (25 - y²) ⋮ 8
⇒ y ∈ {-5; -3; -1; 1; 3; 5}
⇒ (25 - y²) : 8 ∈ {0; 2; 3}
⇒ (x - 2022)² ∈ {0; 2; 3}
⇒ x - 2022 = 0
⇒ x = 2022
Vậy ta tìm được 2 cặp giá trị (x; y) thỏa mãn:
(2022; -5); (2022; 5)
\(x,y\in\left\{\left(2022;5\right)\left(2022;-5\right)\right\}\)
help me!
Tìm x;y thuộc Z biết: 25-y2 =8(x-2015)2
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài