$\frac{1}{11}$ + $\frac{1}{12}$ + $\frac{1}{13}$ + ... + $\frac{1}{20}$ với $\frac{1}{2}$
Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
So sánh S với \(\frac{1}{2}\)
mình học toán cảm thấy nhức óc lắm, hoa mắt luôn
Ta thấy:
1/11<1/4
1/12<1/4
.......
1/20<1/4
Suy ra ta có:
Vì \(\dfrac{1}{11}>\dfrac{1}{20};\dfrac{1}{12}>\dfrac{1}{20};....;\dfrac{1}{19}>\dfrac{1}{20};\dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow s>\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{20}.........+\dfrac{1}{20}\)(20 phân số)
\(\Rightarrow S>\dfrac{10}{20}=\dfrac{1}{2}\)
Vậy \(S>\dfrac{1}{2}\)
Cho tổng S =\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\). Hãy so sánh giá trị tổng S với \(\frac{1}{2}\)
Ta có \(\frac{1}{11};\frac{1}{12};\frac{1}{13};...;\frac{1}{19}>\frac{1}{20}\)
Suy ra S > \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( có 10 số hạng)=\(\frac{10}{20}=\frac{1}{2}\)Vậy S>\(\frac{1}{2}\)Ta có S=1/11+1/12+1/13+...+1/20(có 10 phân số)
S>1/20+1/20+1/20+...+1/20(có 10 phân số)
S<10/20=1/2
Nên tổng của S>1/2
Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
Ta xét : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\)
Vì \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
nên \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\) ( đpcm )
Tính nhanh:
A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
B=\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
A = \(\frac{-79}{90}\)
B = \(\frac{8}{9}\)
Chứng minh rằng:
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}<\frac{1}{2}\)
Cho \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S với \(\frac{1}{2}\)
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}>\frac{5}{11}\)
cho S\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
so sánh S và \(\frac{1}{2}\)
Ta có:
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Vậy S > \(\frac{1}{2}\)
1/2 lớn hơn S, xin lỗi tớ không biết cách viết phân số
các số S càng cộng với nhau càng nhỏ
Bài 1 :Thực hiện phép tính :
a) M =(\(\frac{-6}{13}+\frac{15}{26}-\frac{47}{39}-\frac{1}{78}\)) : (\(99\frac{17}{65}-100\frac{5}{52}+\frac{1}{130}\))
b) N = \(\frac{(\frac{3}{5}-0,435+\frac{1}{200}):\left(-0,04\right)}{30,75+\frac{1}{12}+3\frac{1}{6}}\)
c) P = (\(\frac{-5}{6}:\frac{-10}{11}\))+\(\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{\frac{-2}{12}-\frac{10}{24}+\frac{14}{39}}\)
Bài 2 : Thực hiện phép tính :V
a) P =\(\frac{\frac{1}{5}-\frac{1}{9}+\frac{1}{13}}{\frac{9}{5}-1+\frac{9}{13}}+\frac{\frac{10}{7}-\frac{10}{11}-\frac{10}{17}}{\frac{12}{7}-\frac{12}{11}-\frac{12}{17}}\)
b) Q = \(\frac{\frac{1}{14}-\frac{1}{30}-\frac{1}{46}}{\frac{2}{35}-\frac{2}{75}-\frac{2}{115}}:\frac{\frac{3}{8}-\frac{15}{17}+\frac{30}{31}}{\frac{1}{6}-\frac{20}{51}+\frac{40}{93}}\)
có rất nhiều câu dễ ở trong đề sao bạn Ko thử làm đi rồi câu nào khó lại hỏi