Những câu hỏi liên quan
TP
Xem chi tiết
NM
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Bình luận (0)
NM
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Bình luận (0)
LT
25 tháng 12 2021 lúc 20:18

đúng rùi

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
PA
23 tháng 7 2020 lúc 19:54

hơi vô lý

Bình luận (0)
 Khách vãng lai đã xóa
KA
23 tháng 7 2020 lúc 20:15

Trả lời:

1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)

                          \(=3^{60}-3^{56}\)

                          \(=3^{55}.\left(3^5-3\right)\)

                          \(=3^{55}.\left(243-3\right)\)

                         \(=3^{55}\times240\)\(⋮240\)

Vậy \(27^{20}-3^{56}\)chia hết cho 240

2, Ta có: \(3a+7b⋮19\)

\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)

\(\Leftrightarrow6a+14b⋮19\)

\(\Leftrightarrow6a+33b-19b⋮19\)

\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)

Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)

Vậy \(2a+11b\)chia hết cho 19

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NT
19 tháng 11 2022 lúc 22:16

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

Bình luận (0)
H24
Xem chi tiết
TH
28 tháng 10 2016 lúc 20:27

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

Bình luận (2)
NY
Xem chi tiết
DP
5 tháng 11 2020 lúc 20:01

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 11 2017 lúc 20:09

 9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y) 
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17 
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17

Bình luận (0)
NQ
24 tháng 11 2017 lúc 20:10

Nếu 2x+3y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17

Hay 26x + 39 y chia hết cho 17

Mà 17x và 34 y đều chia hết cho 17

=> 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17

Nếu 9x+5y chia hết cho 17

Mà 17x và 34y đều chia hết cho 17

=> 9x+5y+17x+34y chia hết cho 17

=> 26x+39y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17

=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )

k mk nha

Bình luận (0)
NH
24 tháng 11 2017 lúc 20:22
Ta có: 4.(2x+3y)+(9x+5y)=17x+17y chia hết cho 17. Vì2x+3y chia hết cho 17=>4.(2x+3y)chia hết cho 17=> 9x+5y chia hết cho 17
Bình luận (0)
VA
Xem chi tiết
2N
Xem chi tiết
HH
2 tháng 9 2019 lúc 17:23

Số phần tử của A là: (33-26):1+1=8 (số hạng)

vậy A= (33+26).8/2=236

Bình luận (0)
BD
2 tháng 9 2019 lúc 17:24

       [Giải:]

= (26 + 33) + (27 + 32) + (28 + 31) +(29 + 30)

= 59 + 59 + 59 + 59

= 59 . 4

= 236

           [ Hoq chắc ]

Bình luận (0)
H24
2 tháng 9 2019 lúc 17:25

A= 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33

A = ( 26 + 33 ) +( 27 + 32 ) + ( 28 + 31 ) + ( 29 + 30 ) 

A = 59 + 59 + 59 + 59 

A = 59 x 4

A = 236

~ Hok tốt ~

Bình luận (0)