16^x <128
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0CHo \(x,y>0\) và xy=16 Tìm Min S\(=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)
\(S=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)
\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{16}{80}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right).16}{16\left(y+16\right).100.80}}=\dfrac{3x}{20}\)
\(tương\) \(tự\Rightarrow\dfrac{y^3}{16\left(x+16\right)}\ge\dfrac{3y}{20}\)
\(\Rightarrow S\ge\dfrac{3x}{20}+\dfrac{3y}{20}-\left(\dfrac{x+16}{100}+\dfrac{y+16}{100}\right)-2.\dfrac{16}{80}+\dfrac{2021}{2022}=\dfrac{3x+3y}{20}-\dfrac{x+y+32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{15x+15y-x-y-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{14\left(x+y\right)-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}\)
\(xy=16\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow x+y\ge8\Rightarrow S\ge\dfrac{14.8-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{2}{5}+\dfrac{2021}{2022}\)
\(\Rightarrow minS=\dfrac{2}{5}+\dfrac{2021}{2022}\Leftrightarrow x=y=4\)
\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{1}{5}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right)}{16.100.5\left(y+16\right)}}=\dfrac{3x}{20}\)
Tương tự: \(\dfrac{y^3}{16\left(x+16\right)}+\dfrac{x+16}{100}+\dfrac{1}{5}\ge\dfrac{3y}{20}\)
Cộng vế:
\(S+\dfrac{x+y+32}{100}+\dfrac{2}{5}\ge\dfrac{3\left(x+y\right)}{20}+\dfrac{2021}{2022}\)
\(S\ge\dfrac{9}{20}\left(x+y\right)-\dfrac{42}{25}+\dfrac{2021}{2022}\ge\dfrac{9}{20}.2\sqrt{xy}-\dfrac{42}{25}+\dfrac{2021}{2022}=...\)
16 x 48 + 16 x 24 + 16 x 28 / 325 - 317 + 426 - 418
\(=\dfrac{16\left(48+24+28\right)}{16}=100\)
`[16xx48+16xx24+16xx28]/[325-317+426-418]`
`=[16xx(48+24+28)]/[8+426-418]`
`=[16xx100]/[434-418]=[16xx100]/16=100`
Cho các số thực x, y thỏa mãn -4 ≤ x ≤ 4; 0 ≤ y ≤ 16. Chứng minh rằng: \(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\) ≤ 16
Áp dụng BĐT Bunhiacopski:
Đặt \(A=x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\)
\(\Leftrightarrow A^2=\left[x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\right]^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)\\ \Leftrightarrow A^2\le16\cdot16=256\\ \Leftrightarrow A\le16\\ A_{max}=16\Leftrightarrow\dfrac{x^2}{16-x^2}=\dfrac{16-y}{y}\Leftrightarrow x^2y=256-16y-16x^2+x^2y\\ \Leftrightarrow16x^2+16y-256=0\\ \Leftrightarrow x^2+y-16=0\\ \Leftrightarrow x^2=16-y\Leftrightarrow x=\sqrt{16-y}\)
Tìm số nguyên x, biết:
6 + 2.(x - 19) = 16
(-240) : x – 16 = 64
2x3 = 16
1. \(\text{6 + 2.(x - 19) = 16}.\)
\(\Leftrightarrow2.\left(x-19\right)=10.\)
\(\Leftrightarrow x-19=5.\)
\(\Leftrightarrow x=24.\)
Vậy \(x=24.\)
2. \(\text{(-240) : x – 16 = 64}.\)
\(\Leftrightarrow\left(-240\right):x=80.\)
\(\Leftrightarrow x=-3.\)
Vậy \(x=-3.\)
3. \(2x^3=16.\)
\(\Leftrightarrow x^3=8.\)
\(\Leftrightarrow x=2.\)
Vậy \(x=2.\)
Khai triển hằng đẳng thức \(\left(x-4\right)^2\) ta được kết quả là:
A. \(x^2\) – 4x + 16. B. \(x^2\) – 8x + 16. C. \(x^2\) + 4x + 16. D. \(x^2\) + 8x + 16.
\(\dfrac{4}{3.5}\) + \(\dfrac{8}{5.9}\) + \(\dfrac{12}{9.15}\)+.......+
\(\dfrac{32}{x(x+16)}\) = \(\dfrac{16}{15}\)
\(\dfrac{32}{x(x+16)}\) = \(\dfrac{16}{15}\)
\(\dfrac{HeLp}{me}\) \(\dfrac{nguyễn}{đức}{Trí}\)
\(\dfrac{4}{3.5}+\dfrac{8}{5.9}+\dfrac{12}{9.15}+...+\dfrac{32}{x\left(x+16\right)}=\dfrac{16}{15}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+\dfrac{6}{9.15}+..+\dfrac{16}{X.\left(X+16\right)}\right)=\dfrac{16}{15}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+...+\dfrac{1}{X}-\dfrac{1}{X+16}=\dfrac{8}{15}\)
\(\dfrac{1}{X+16}=\dfrac{1}{3}-\dfrac{8}{15}\)
\(\dfrac{1}{X+16}=\dfrac{-1}{5}\)
\(X+16=-5\)
\(X=-21\)
Bài 5: Tính nhanh
A, 327 - 16 + 216 - 27 + 600
B, 16 x 48 + 8 x 48 + 16 x 28
giúp với
327 - 16 + 216 - 27 + 600 16 x 48 + 8 x 48 + 16 x 28
=(327 - 27) + (216 - 16) + 600 =16 x 48 + 16 x 24 + 16 x 28
=300 + 200 + 600 =16 x (48 + 24 + 28)
=500 + 600 =16 x 100
=1100 =1600
Tìm x:
3x(x - 16) - (x - 16) = 0
\(\left\{{}\begin{matrix}x-16=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left(x-16\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-16=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=\dfrac{1}{3}\end{matrix}\right.\)
=>x-16=0 hoặc 3x-1=0
x = 16 x = ⅓
Tìm x:
C)x⋮3,x<20
D)16⋮x,0<x<16
c: C={0;3;6;9;12;15;18}
c,Theo đầu bài ta có:
x⋮3 và x<20 => x thuộc tập hợp 3,6,9,12,15,18
d,Theo đầu bài ta có:
16⋮x và 0<x<16 => x thuộc tập hợp 4,8
C, x={0;3;6;9;12;15;18}
D, x={1;2;4;8}