Những câu hỏi liên quan
HL
Xem chi tiết
NT
25 tháng 12 2021 lúc 11:28

Bài 3: 

a: =>5x-30=25

hay x=11

Bình luận (0)
NB
26 tháng 10 2022 lúc 19:35

Bài 3: 

a: =>5x-30=25

hay x=11

Bình luận (0)
H24
Xem chi tiết
NL
30 tháng 1 2022 lúc 22:45

Tịnh tiến đồ thị vế phía trái \(x_1+1\) đơn vị độ dài (trung điểm \(x_1;x_2\) trùng gốc tọa độ) \(\Rightarrow\) hai cực trị của hàm số lúc này là -1 và 1

\(\Rightarrow y'=0\) có 2 nghiệm \(\pm1\Rightarrow f'\left(x\right)=a\left(x^2-1\right)\Rightarrow f\left(x\right)=\dfrac{a}{3}\left(x^3-3x\right)\)

\(\int\limits^0_{-1}f\left(x\right)dx=\dfrac{5}{4}\Rightarrow\int\limits^0_{-1}\dfrac{a}{3}\left(x^3-3x\right)=\dfrac{5}{4}\Rightarrow\dfrac{a}{3}.\dfrac{5}{4}=\dfrac{5}{4}\Rightarrow a=3\)

\(\Rightarrow f\left(x\right)=x^3-3x\Rightarrow L=\lim\limits_{x\rightarrow-1}\dfrac{x^3-3x-2}{\left(x+1\right)^2}=\lim\limits_{x\rightarrow-1}\left(x-2\right)=-3\)

Bình luận (0)
PT
Xem chi tiết
H24
23 tháng 11 2021 lúc 16:33
Bình luận (0)
H24
Xem chi tiết
DL
31 tháng 1 2022 lúc 23:33

Do \(M\in d\) nên M(1+2t; 1-t ; t) 

MA+MB= \(\sqrt{4t^2+\left(t-1\right)^2+\left(t+1\right)^2}+\sqrt{\left(2t-1\right)^2+t^2+\left(t-1\right)^2}\)

\(=\sqrt{6t^2+2}+\sqrt{6t^2-6t+2}=\sqrt{6t^2+2+}\sqrt{6.\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}}\) 

Chọn \(\overset{r}{u}=\left(\sqrt{6t};\sqrt{2}\right);\overset{r}{v}=\left(\sqrt{6}.\left(\dfrac{1}{2}-t\right);\dfrac{1}{\sqrt{2}}\right)\)

\(\Rightarrow\overset{r}{u}+\overset{r}{v}=\left(\dfrac{\sqrt{6}}{2};\dfrac{3}{\sqrt{2}}\right)\) , Ta có :

MA+MB=\(\left|\overset{r}{u}\right|+\left|\overset{r}{v}\right|\ge\left|\overset{r}{u}+\overset{r}{v}\right|=\sqrt{\dfrac{6}{4}+\dfrac{9}{2}}=\sqrt{6}\)

Dấu đẳng thức xảy ra <=> \(\overset{r}{u};\overset{r}{v}\) cùng hướng

\(\Leftrightarrow\dfrac{\sqrt{6t}}{\sqrt{6}\left(\dfrac{1}{2}-t\right)}=\dfrac{\sqrt{2}}{\dfrac{1}{\sqrt{2}}}\Leftrightarrow1=1-2t\)

\(\Leftrightarrow t=\dfrac{1}{3}\) . Vậy MA+MB nhỏ nhất

\(\Leftrightarrow M\left(\dfrac{5}{3},\dfrac{2}{3};\dfrac{1}{3}\right)\)

Vậy chọn D 

Bình luận (0)
H24
Xem chi tiết
NT
31 tháng 1 2022 lúc 19:24

Chọn A

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 2 2022 lúc 14:14

(SAB) và (SCD) có AB // CD => giao tuyến của chúng là 1 đường thẳng song song với AB và CD

Mà SD vuông góc với CD; SA vuông góc với AB nên góc giữa 2 mp (SAB) và (SCD) là góc giữa SA và SD hay là góc ASD

tan \(\widehat{ASD}\) = \(\dfrac{AD}{SA}\) = \(\dfrac{1}{\sqrt{3}}\)

=> \(\widehat{ASD}=30^{^o}\)

Bình luận (0)
DL
1 tháng 2 2022 lúc 12:32

Giúp suốt mà bạn chẳng tick nun, mùng mọt ròi chơi đuy 33

Bình luận (0)
H24
Xem chi tiết
HP
31 tháng 1 2022 lúc 13:58

A thì phải

Bình luận (0)
DL
31 tháng 1 2022 lúc 23:52

+ số phần tử của không gian mẫu là: \(n\left(\pi\right)=C\overset{1}{6}.C\overset{1}{6}=36\)

+ gọi A bằng " Cả 2 lần xuất hiện mặt 6 chấm "

số phần tử của biến cố A là n(A) =1

Xác xuất biến cố A là P(A) = \(\dfrac{n\left(A\right)}{n\left(\pi\right)}=\dfrac{1}{36}\)

Vậy chọn A

Bình luận (0)
GL
Xem chi tiết
H24
Xem chi tiết
H24
16 tháng 2 2022 lúc 7:46

B nhé

Bình luận (0)
NL
16 tháng 2 2022 lúc 19:47

\(g'\left(x\right)=3.f'\left(3x\right)+9=0\Rightarrow f'\left(3x\right)=-3\Rightarrow\left[{}\begin{matrix}3x=-1\\3x=0\\3x=1\\3x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=0\\x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\) Trên \(\left[-\dfrac{1}{3};\dfrac{1}{3}\right]\) hàm \(g\left(x\right)\) đạt cực đại tại \(x=0\) và cực tiểu tại \(x=-\dfrac{1}{3};\dfrac{1}{3}\)

\(\Rightarrow g\left(x\right)_{max}=g\left(0\right)=f\left(0\right)\)

Bình luận (0)