Cho S=2+2^2+2^3+...+2^100
chứng minh S chia hết cho 15
A=13+23+33+....+1003
B=1+2+3+....+100
Chứng minh A chia hết cho B
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
Cho S = 2^1+2^2+2^3+...+2^100. Chứng minh S chia hết cho 15
A=2+2^2+2^3+...+2^100
= (2+2^2+2^3+2^4)+...(2^97+2^98+2^99+2^100)
=2(1+2+2^2+2^3)+....+2^97(1+2+2^2+2^3)
= 2.15 +.....+2^97.15
=(2+....+2^97).15 chia hết cho 15
S = 21 + 22 + 23 + 24 + .... + 2100
S = ( 21 + 22 + 23 + 24 + .... + ( 297 + 298 + 299 + 2100 )
S = 2 . ( 1 + 2 + 4 + 8 ) +.... + 297 . ( 1 + 2 + 4 + 8 )
S = 2 . 15 + ... + 297 . 15
S = ( 2 + ... + 297 ) . 15
Mà 15 chia hết cho 15 suy ra S chia hết cho 15
Cho S= 21 + 22 + 23 + . . . . + 2100
Chứng minh rằng S chia hết cho 3
Chứng minh rằng S chia hết cho 15
Cho S=2+2 mũ 2+2 mũ 3+...+2 mũ 100
chứng minh rằng
a) S chia hết 3
b) S chia hết 15
S=2+22+23+...+2100
S=(2+22)+(23+24)+....+(299+2100)
S=6+22(23+24)+....+298(2+22)
S=1.6+22.6+...+298.6
S=6.(1+22+....+296) chia hết cho 3
S=2+22+23+...+2100
S=(2+22+23+24)+....+(297+298+299+2100)
S=30+.....+296(2+22+23+24)
S=1.30+....+296.30
S=30.(1+....+296) chia hết cho 15
a,2 + 2^2 + 2^3 + ... + 2^100
<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)
<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)
<=>2.3 + 2^3.3 +...+2699.3
<=>3.(2+2^3+....+2^99)
=> S chia hết cho 3
phần b chỉ cần nhóm 4 số vào thôi
S=2+22+23+24+...+2100 Chứng minh rằng:
A)S chia hết cho 3
B) S chia hết cho 15
Giải:
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3
Câu b tương tự
A- 2 + 22 +2 +............+2100
<=> A= (2 + 22) +(23 + 240 +....+(299+2100)
<=>A=6+22.6+.....+298:6
<=>A=6.(22+.......298) :3
Cho S = 2 + 22 + 23 + 24 + .......+2100.
a ) Chứng minh rằng S chia hết cho 3.
b) Chứng minh rằng S chia hết cho 15.
c) S có tận cùng bằng chữ số nào ?
a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6
b) Tương tự a
c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0
Nhớ ticks đúng cho mình nhé
a) S = 2 + 22 + 23 + 24 + .... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )
= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )
= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )
= 6 + 22 . 6 + .... + 298 . 6
= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )
a, S=2+2^2+....+2^100
S=(2+2^2)+(2^3+2^4)+.....+(2^99+2^100)
S=(2.3)+(2^3.3)+.....+(2^99.3)
S=(2+2^3+...+2^99).3
Suy ra S chia hết cho 3.
b,Chia hết cho 15 ghép 4 số.
Cho
S=20+21+22+23+24+...+2103
Chứng minh rằng :
a ) S chia hết cho 3
b ) S chia hết cho 15
c) S chia hết cho 255
\(S=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{102}+2^{103}\right)=3.2^0+3.2^2+.....+2^{102}.3=3.\left(2^0+2^2+....+2^{102}\right)\)
Vậy S chia hết chp 3 (đpcm)
A) Cho P = 3 + 32 + 33 + 34+ ... + 3100.Chứng minh P chia hết cho 4
B) Cho S = 2 + 22 + 23 + 24 + ... + 2100 . Chứng minh :
1) S chia hết cho 3 2) S chia hết cho 15
C) Cho T = 22000 + 22002. Chứng minh T chia hết cho 5120
Nhanh tick
1.
Cho S = 2^1 + 2^2 + 2^3 + ... + 2^100
Chứng minh rằng S chia hết cho 15