CMR:S=3+32+...+31998 chia hết cho12;39
S=3+32+3...+31998. chứng minh S chia hết cho 26
Cho S= 3+32+33+.....+31998
a)CMR:S chia hết cho 12
b)CMR:S chia hết cho 39
cho S=3^1+3^2+3^3+...+3^1998. chứng minh S chia hết cho12 và S chia hết cho 39
CMR:S=1+3+32+...+32011chia hết cho 4
Ta có S=1+3+3^2+...+3^2011 chia hết cho 4
=(1+3)+(3^2+3^3)+...+(3^2010+3^2011)
=1.(1+3)+3^2.(1+3)+...+3^2010.(1+3)
=1.4+3^2 .4+...+3^2010 .4
=4.(1+3^2+...+3^2010) chia hết cho 4
Vậy: S chia hết cho 4
cho B = 3+^2 + 3^3+...3^90
chứng minh rằng
a) B chia hết cho 4 ; B) B chia hết cho12 ; C) B chia hết cho 13
a) \(B=3+3^2+...+3^{90}\)
\(\Leftrightarrow B=\left(3+3^2\right)+...+\left(3^{89}+3^{90}\right)\)
\(\Leftrightarrow B=\left(3+3^2\right)+...+3^{88}.\left(3+3^2\right)\)
\(\Leftrightarrow B=12+...+3^{88}.12\)
\(\Leftrightarrow B=12.\left(1+...+3^{88}\right)⋮4\left(đpcm\right)\)
b)\(B=3+3^2+...+3^{90}\)
\(\Leftrightarrow B=\left(3+3^2\right)+...+\left(3^{89}+3^{90}\right)\)
\(\Leftrightarrow B=\left(3+3^2\right)+...+3^{88}.\left(3+3^2\right)\)
\(\Leftrightarrow B=12+...+3^{88}.12\)
\(\Leftrightarrow B=12.\left(1+...+3^{88}\right)⋮12\left(đpcm\right)\)
c) \(B=3+3^2+...+3^{90}\)
\(\Leftrightarrow B=\left(3+3^2+3^3\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(\Leftrightarrow B=\left(3+3^2+3^3\right)+...+3^{87}.\left(3+3^2+3^3\right)\)
\(\Leftrightarrow B=39+...+3^{87}.39\)
\(\Leftrightarrow B=39.\left(1+..+3^{87}\right)⋮39\left(đpcm\right)\)
Cho S = 3 + 3\(^2\) + 3\(^3\) + 3\(^4\) + 3 \(^5\) + .......+3\(^{99}\) + 3\(^{100}\)
a) CMR:S CHIA HẾT 4
B) CMR:S CHIA HẾT 120
\(S=3+3^2+3^3+3^4+3^5+.....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+......+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+.......+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+....+3^{99}\right)\)
\(=4\left(3+3^3+.....+3^{99}\right)\)chia hết cho ( đpcm )
\(s=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(s=3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(s=\left(1+3+3^2+3^3\right).\left(3+...+3^{97}\right)\)
\(s=120.\left(3+...+3^{97}\right)\)
\(\Rightarrow\)s chia hết cho 120
Chứng minh rằng mọi số n thì
a)n(n+5)-(n-3)(n+2)chia hết cho 6
b)(n-1)(n+1)-(n-7)(n-15)chia hết cho12
\(a,n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-n^2+n+6=6n+6=6\left(n+1\right)⋮6\)
\(b,\) Sửa đề:
\(b,\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-n^2+12n-35\\ =12n-36=12\left(n-3\right)⋮12\)
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
x chia hết cho12, x chia hết cho 10 và -200< x <200, tìm x
Vì x \(⋮12;10\)\(\Rightarrow x=ƯC\)( 12 ; 10 )
Mà 12 = 22 x 3
10 = 2 x 5
\(\Rightarrow\)ƯCLN ( 10;12 ) = 2.
Mà x = ƯC ( 12 ; 10 )
\(\Rightarrow x=2.\)
x có 2 giá trị là :
120 và -120
đ/s : ...
nha