Tìm tập xác định: \(y=\tan\left(2x-\dfrac{\pi}{5}\right)\)
tìm tập xác định của hàm số
a) y = \(tan\left(2x-\dfrac{\pi}{3}\right)\)
b) y = \(tan\left(3x-\dfrac{\pi}{4}\right)\)
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
Tìm tập xác định của các hàm số sau:
1,\(y=sin\dfrac{3x+2}{2x-1}\)
2,\(y=tan\left(3x+\dfrac{2\pi}{5}\right)\)
3,\(y=cot\left(2x-\dfrac{1}{3}\right)\)
4,\(y=\dfrac{sinx+cosx}{sinx-cosx}\)
5,\(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\)
6,\(y=\dfrac{\sqrt{1-sinx}}{cosx}\)
7,\(y=\dfrac{3}{sin^2x-cos^2x}\)
8,\(y=\dfrac{1+tanx}{1+sinx}\)
9,\(y=\sqrt{\dfrac{1+sinx}{1-cosx}}\)
tìm tập xác định của hàm số
a) y = \(cot\left(2x+\dfrac{\pi}{4}\right)\)
b) y = \(cot\left(\dfrac{\pi}{3}-x\right)\)
c1 tập xác định của hàm số \(y=\dfrac{sin2x+cosx}{tanx-sinx}\)
c2 tập xác định của hàm số \(y=\sqrt{1+cot^22x}\)
c3 tập xác định của hàm số \(y=cot\left(x-\dfrac{\pi}{4}\right)+tan\left(x-\dfrac{\pi}{4}\right)\)
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
câu 2 ..... \(\dfrac{cos^22x}{sin^22x}=cot^22x\) nên suy ra sin2x khác 0 đúng hơm
còn câu 3, tui ko hiểu chỗ sin(2x-pi/4).. sao ở đây rớt xuống dợ
Tìm tập xác định của hàm số sau
a) y=cot(\(3x+\dfrac{\pi}{6}\)) + \(\dfrac{tan2x}{sinx+1}\)
b) y=\(\sqrt{5+2cot^2x-sinx}\) + cot\(\left(\dfrac{\pi}{2}+x\right)\)
a.
\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
b.
Do \(5+2cot^2x-sinx=4+2cot^2x+\left(1-sinx\right)>0\) nên hàm xác định khi:
\(\left\{{}\begin{matrix}sinx\ne0\\sin\left(x+\dfrac{\pi}{2}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
tìm tập xác định của hàm số
a) y =\(tan\left(x-\dfrac{2\pi}{3}\right)\)
b) y = \(cot5x\)
c) y = \(cot7x\)
Tìm tập xác định của các hàm số sau:
1) a) y=tanx+3
b) y=3-4cotx
c) y=tan2x+1
d) y=4-5cot3x
e) \(y=tan\left(x+\dfrac{\pi}{3}\right)\)-3
f) \(y=4-2cot\left(x-\dfrac{\pi}{6}\right)\)
2) a) y=3sinx-4cosx+5
b) y=3cos2x-4sin2x+1
c) \(y=\dfrac{3}{1-cosx}+5\)
d) \(\dfrac{1}{1+cosx}+2\)
e) \(y=\dfrac{sinx+2}{cosx+3}\)
f) \(y=1-\dfrac{2}{sinx-1}\)
g) \(y=2x+\dfrac{3}{1+sinx}\)
h) \(y=x^2-x+\dfrac{1}{sin^2x-sinx}\)
j) y=2tanx-3cotx+5
h) \(y=\sqrt{\dfrac{1-sin^2x}{1+cos^2x}}\)
1:
a: ĐKXĐ: \(x< >\dfrac{\Omega}{2}+k\Omega\)
=>TXĐ: \(D=R\backslash\left\{\dfrac{\Omega}{2}+k\Omega\right\}\)
b: ĐKXĐ: \(x< >k\Omega\)
=>TXĐ: \(D=R\backslash\left\{k\Omega\right\}\)
c: ĐKXĐ: \(2x< >\dfrac{\Omega}{2}+k\Omega\)
=>\(x< >\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\)
TXĐ: \(D=R\backslash\left\{\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\right\}\)
d: ĐKXĐ: \(3x< >\Omega\cdot k\)
=>\(x< >\dfrac{k\Omega}{3}\)
TXĐ: \(D=R\backslash\left\{\dfrac{k\Omega}{3}\right\}\)
e: ĐKXĐ: \(x+\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)
=>\(x< >\dfrac{\Omega}{6}+k\Omega\)
TXĐ: \(D=R\backslash\left\{\dfrac{\Omega}{6}+k\Omega\right\}\)
f: ĐKXĐ: \(x-\dfrac{\Omega}{6}< >\Omega\cdot k\)
=>\(x< >k\Omega+\dfrac{\Omega}{6}\)
TXĐ: \(D=R\backslash\left\{k\Omega+\dfrac{\Omega}{6}\right\}\)
Tìm tập xác định của hàm số y = \(2tan^4\left(2x-\dfrac{\pi}{3}\right)\)
\(ĐKXĐ:2x-\dfrac{\pi}{3}\ne\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\)
\(\Leftrightarrow2x\ne\dfrac{5\pi}{6}+k\pi\left(k\in Z\right)\)
\(\Leftrightarrow x\ne\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\left(k\in Z\right)\)
TXĐ:\(D=R\ \)\\(\left\{\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\text{|}k\in Z\right\}\)