Phân tích đa thức thành nhân tử:
a. 3(x^4-x^2+1)-(x^2+x+1)^2
b. a^6+a^4+a^2*b^2+b^4-b^6
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^2} - 1\)
b) \({\left( {x + 2} \right)^2} - 9\)
c) \({\left( {a + b} \right)^2} - {\left( {a - 2b} \right)^2}\)
a) \(4x^2-1=\left(2x+1\right)\left(2x-1\right)\)
b) \(\left(x+2\right)^2-9=\left(x-1\right)\left(x+5\right)\)
c) \(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left(a+b-a+2b\right)\left(a+b+a-2b\right)\)
\(=3b\left(2a-b\right)\)
`a, 4x^2-1 = (2x+1)(2x-1)`
`b, (x+2)^2-9 = (x+2-3)(x+2+3) = (x-1)(x+5)`
`c, (a+b)^2-(a-2b)^2 = (a+b+a-2b)(a+b-a+2b) = (2a-b)(3b)`
Phân tích đa thức thành nhân tử :
a, 3 (x^4+x^2+1)-(x^2+x+1)^2
b, 6x^4+y^4
c, a^6+a^4+a^2b^2+b^4-b^6
d, x^3 +3xy+y^3-1
vại
fdvfdverberrgtrgrgg
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2- 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 +2x^3 + 2x^2
d) x^3 + 3x^2 + 3x +1 - 8y^3
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
c) Ta có: \(x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)
d) Ta có: \(x^3+3x^2+3x+1-8y^3\)
\(=\left(x+1\right)^3-\left(2y\right)^3\)
\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2 - 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 + 2x^3 + 2x^2
d) x^3 + 3x^2 + 3x + 1 - 8y^3
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
Phân tích các đa thức sau thành nhân tử
a) a^6+a^4+a^2b^2+b^4-b^6
b) x^3+3xy+y^3-1
a/ \(\left(a^2-b^2+1\right)\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\)
b/ \(\left(x+y-1\right)\left(y^2-xy+y+x^2+x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \({\left( {x - 1} \right)^2} - 4\)
b) \(4{x^2} + 12x + 9\)
c) \({x^3} - 8{y^6}\)
d) \({x^5} - {x^3} - {x^2} + 1\)
e) \( - 4{x^3} + 4{x^2} + x - 1\)
f) \(8{x^3} + 12{x^2} + 6x + 1\)
\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)
\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)
\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)
Phân tích đa thức thành nhân tử
a. 3(x^4-x^2+1)-(x^2+x+1)^2
b. a^6+a^4+a^2*b^2+b^4-b^6
Phân tích đa thức thành nhân tử :
1) x^2 +2xy+y^2 -x-y-12
2) 4x^4 -32x^2+1
3) 3(x^4 +x^2 +1) - (x^2 +x+1)^2
4) a^6 + a^4 + a^2b^2 + b^4 - b^6
5) x^3 + 3xy + y^3 -1
6) 4x^4 +4x^3 +5x^2+2x+1
1) \(x^2+2xy+y^2-x-y-12\)
= \(\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(x+y=z\) (đặt ẩn phụ)
\(\Rightarrow z^2-z-12\)
\(=z^2+3z-4z-12\)
\(=z\left(z+3\right)-4\left(z+3\right)\)
\(=\left(z+3\right)\left(z-4\right)\)
Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)
#HuyenAnh
TỰ LUẬN (7 điểm)
Câu 1. (2,0 điểm) Cho đa thức A = (x+2)(x²-2x+4)+x(1-x)
a) Rút gọn đa thức A?
b) Tính giá trị đa thức A khi x = -4
c) Tìm giá trị của x để A = -2
Câu 2. (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) x³-3x²
b) 5x310x2 + 5x
Câu 3. (3,0 điểm). Cho tam giác ABC vuông tại A. (AB < AC), đường cao AH. Từ H kẻ HẸ và HF lần lượt vuông góc với AB và AC. (E AB, Fe AC).
a) Chứng minh rằng: AH = EF?.
b) Trên FC lấy điểm K sao cho FK = AF. Chứng minh rằng tứ giác EHKF là hình bình hành?
c) Gọi O là giao điểm của AH và EF, 1 là giao điểm của HF và ẸK. Chứng minh: 1 OLIAC và OI = AK? 4
Câu 4. (0,5 điểm)
Tìm GTNN của biểu thức sau: A = 2x² + y²+2xy + 2x-2y+2028
Hết
Câu 1:
a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)
\(=x^3+2^3+x\left(1-x^2\right)\)
\(=x^3+8+x-x^3\)
=x+8
b: Khi x=-4 thì A=-4+8=4
c: Đặt A=-2
=>x+8=-2
=>x=-10
Câu 2:
a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)
b: \(5x^3+10x^2+5x\)
\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)
\(=5x\left(x^2+2x+1\right)\)
\(=5x\left(x+1\right)^2\)