Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
PC
Xem chi tiết
NT
10 tháng 2 2016 lúc 10:12

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

Bình luận (0)
NN
24 tháng 3 2021 lúc 21:10

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bình luận (0)
 Khách vãng lai đã xóa
TN
28 tháng 3 2021 lúc 21:52

cũng dễ thôi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
28 tháng 7 2021 lúc 0:02

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

Ta có: \(x^2-y^2+2z^2=108\)

\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)

\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)

Bình luận (0)
MT
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
NT
14 tháng 10 2021 lúc 21:21

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

Bình luận (0)
NM
14 tháng 10 2021 lúc 22:01

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)

Bình luận (0)
LP
Xem chi tiết
NT
31 tháng 12 2021 lúc 22:21

Bài 2: 

b: x=12; y=80

Bình luận (0)
VL
Xem chi tiết