Cho nn chẵn chứng minh 16 mũ n+12 mũ n−5 mũ n-1 chia hết cho 187
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
cho số nguyên n lớn hơn 1, có tính chất cả n mũ 2 + 4 và n mũ 2 + 16 đều là số nguyên tố. Chứng minh n chia hết cho 5
t32842764990800786bnrfyuhhgyh
bạn nào bik thì giải bài này giúp mik vói ak :
a) a=2 mũ 11 + 2 mũ 12 +2 mũ 13+2 mũ 14+2 mũ 15 +2 mũ 16: hãy chứng tỏ a chia hết cho 3 và 7
b)Tìm n , bik :
n+7 chia hết cho n
n+11 chia hết cho n+9
2n+13 chia hết cho n+3
b) \(n+7⋮n\)
Mà: \(n⋮n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)
Vậy giá trị n cần tìm là: n=1;-1;7;-7
\(n+11⋮n+9\)
\(\Rightarrow\left(n+9\right)+2⋮n+9\)
Do: \(n+9⋮n+9\)
\(\Rightarrow2⋮n+9\)
\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
Lập bảng giá trị:
n+9 | 1 | 2 | -1 | -2 |
n | -8 | -7 | -10 | -11 |
Vậy giá trị n cần tìm là: n=-8;-7;-10;-11
\(2n+13⋮n+3\)
\(\Rightarrow2\left(n+3\right)+7⋮n+3\)
Vì: \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng giá trị:
n+3 | 1 | 7 | -1 | -7 |
n | -2 | 4 | -4 | -10 |
Vậy giá trị n cần tìm là: n=-2;4;-4;-10
S=1+5+5 mũ 2+5 mũ 3+...+5 mũ 28
a. Chứng minh S chia hết cho 3
b. Tìm n biết:45+1=5 mũ n
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)
\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)
b) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)
\(\Rightarrow4S=5^{29}-1\)
\(\Rightarrow4S+1=5^{29}-1+1\)
\(\Rightarrow4S=5^{29}=5^n\)
\(\Rightarrow n=29\)
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)
\(\Rightarrow dpcm\)
b) Bạn xem lại đề
Chứng minh rằng :
a)6 mũ 1000 - 1 chia hết cho 5
b)2002 mũ n . 2005 mũ n + 1 chia hết cho 2;5 và 10
a) 61000 có chữ số tận cùng là 6 nên 61000 - 1 có chữ số tận cùng là 5. Suy ra 61000 - 1 chia hết cho 5.
b) 2002n . 2005n + 1 = 2002n . 2005n . 2005 = (2002 . 2005)n . 2005
2002 . 2005 có chữ số tận cùng là 0 => (2002 . 2005)n có chữ số tận cùng là 0 => (2002 . 2005)n . 2005 có chữ số tận cùng là 0 => 2002n . 2005n + 1 có chữ số tận cùng là 0 => 2002n . 2005n + 1 chia hết cho 2; 5 và 10.
cho B = 1+4+4 mũ 2 +........ 4 mũ 99
a] tìm n thuộc n để 3B +1 =4 mũ n
b] chứng minh rằng B chia hết cho 5 ; chia hết cho 8
mk chỉ giúp phần a nha
B=1+ 4+42 +....+ 499
4B=4+ 42+43+...+4100
4B-B=4100-1
3B=4100-1
B= 1 + 4+4 MŨ 2+.....+4 MŨ 99
4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100
4B-B=4 MŨ 100- 1
3B=4 mũ 100-1
Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n
Suy ra 4 mũ 100=4 mũ n
suy ran=100
a) 4B= 4+42+43+...+499+4100
B=1+4+42+43+...+499
3B=4100-1
->3B+1=4100 ->n=100
b) B=(1+4)+(42+43)+(44+45)+...+(498+499)
=5.1+5.42+5.44+...+5.498
=5(1+42+44+...+498) chia hết cho 5 (đpcm)
4; 42; 43;...; 499 đều là số chẵn, chỉ có 1 là số lẻ -> Tổng = B lẻ -> B không chia hết cho 8.
Bạn chép sai đề rồi thì phải!!!!
Bài 3: Chứng minh rằng với mọi số tự nhiên n thì:
1) 3 mũ n+2 - 2n+2 - 3n - 2n chia hết cho 10 2) 3 mũ n+2 - 2 mũ n+4 + 3 mũ n + 2 mũ n chia hết cho 30
Bài 4: Chứng minh rằng: 3 mũ n+1 + 3 mũ n+2 + 3 mũ n+3 chia hết cho 13 với mọi số tự nhiên n.
Bài 5: Chứng minh rằng:
1) 2 + 2 mũ 2 + 2 mũ 3 + ...+ 2 mũ 60 chia hết cho 15 2) 1+ 3+ 3 mũ 2 + 3 mũ 3 + ...+ 3 mũ 119 chia hết cho 13
a) (n+3) . (n+6) là số chẵn
b) n .(n+1) .(n+5)chia hết cho 3
c)n mũ 2 +n+1 ko chia hết cho 5
d) n mũ 2 +n+1 ko chia hết cho 4
e) 5 mũ n-1 chia hết cho 4