Tim x,y:|x^2+2*x|+|y^2-9|=0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim x y z biet
a) x.(y-2).(x^2-9)=0
cho x,y>0 và xy=1. Tim GTLN A=x^2+3x+y^2+3y+\(\frac{9}{x^2+y^2+1}\)
Tim x , y thuộc Z biết
x/7 = 9/y và x > y
-2/x = y/5 và x < 0 < y
Tim x, y thuoc Z
A, x / 7 = 9/y va x>y
B, -2/x = y/6 va x<0<y
a: x/7=9/y
nên xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(63;1\right);\left(21;3\right);\left(9;7\right);\left(-1;-63\right);\left(-3;-21\right);\left(-7;-9\right)\right\}\)
b: -2/x=y/6
nên xy=-12
mà x<0<y
nên \(\left(x,y\right)\in\left\{\left(-12;1\right);\left(-6;2\right);\left(-4;3\right);\left(-3;4\right);\left(-2;6\right);\left(-1;12\right)\right\}\)
x/-2=9/y=3-2z/5
x+z=0
Tim y
bai 1: Tim x biet
\(\hept{\begin{cases}x-y=\frac{3}{10}\\y\left(x-y\right)=-\frac{3}{50}\end{cases}}\)
bai 2: Tim x, y biet:
x+\(\left(-\frac{31}{12}\right)^2\)=\(\left(\frac{49}{12}\right)^2\)-x=y2
Bai 9: Tim x,y,z biet:
(x-1)2+(x+y)2+(xy-z)2=0
a) thay \(x-y=\frac{3}{10}\)vào \(y\left(x-y\right)=\frac{-3}{50}\)ta có\(\frac{3}{10}y=\frac{-3}{50}\)=>\(y=\frac{-3}{50}:\frac{3}{10}=\frac{-1}{5}\)=>\(x-y=\frac{3}{10}\Rightarrow x=\frac{3}{10}+\frac{-1}{5}=\frac{1}{10}\)
hôm sau mik giải tip cho
tim x va y
(x-2)2012+|y-9|2014=0
Ta có: \(\left(x-2\right)^{2012}\ge0\forall x\)
\(\left|y-9\right|^{2014}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^{2012}+\left|y-9\right|^{2014}=0\Leftrightarrow\left(x-2\right)^{2012}=\left|y-9\right|^{2014}=0\)
\(\Rightarrow x-2=y-9=0\)
\(\Rightarrow x=2\)và \(y=9\)
Vậy x = 2; y = 9
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
tim x,y biet
(x-5).(y+1) =6
(x-5) .(x2.9) =0
(x-5)(y+1)=6
Ta có bảng
x-5 | 1 | 2 | 3 | 6 |
y+1 | 6 | 3 | 2 | 1 |
x | 6 | 7 | 8 | 11 |
y | 5 | 2 | 1 | 0 |
Vậy các cặp (x;y) là (6;5) ; (7;2) ; (8;1) ; (11;0)
\(\left(x-5\right)\left(x^2.9\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x^2.9=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x^2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=5\\x=0\end{cases}}\)