\(\dfrac{9}{48}\times\left(-2,4\right)+\left(\dfrac{1}{4}+\dfrac{13}{20}\right)\div2\)
\(\dfrac{9}{48}x\left(-2.4\right)+\left(\dfrac{1}{4}+\dfrac{13}{20}\right):2\)
\(=\dfrac{-9}{20}+\dfrac{9}{10}:2\)
\(=-\dfrac{9}{20}+\dfrac{9}{20}\)
\(=0\)
\(=\dfrac{9}{48}\times\left(-8\right)+\dfrac{9}{20}\times\dfrac{1}{2}=-\dfrac{3}{2}+\dfrac{9}{40}=-\dfrac{60}{40}+\dfrac{9}{40}=-\dfrac{51}{40}\)
9/48 x (- 2,4) + 9/10 : 2
= -9/20 + 9/20
= 0
thực hiện phép tính
a,\(\dfrac{2}{3}-\dfrac{3}{5}\div\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\times\dfrac{3}{8}\)
b,\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)\)
c,\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right)\div2\dfrac{3}{5}\right]\times\left(\dfrac{-3}{4}\right)\)
d,\(\dfrac{21}{33}\div\dfrac{11}{5}-\dfrac{13}{33}\div\dfrac{11}{5}+\dfrac{25}{33}\div\dfrac{11}{5}+\dfrac{6}{11}\)
giúp mình nhé
a)\(\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\cdot\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}\cdot\dfrac{-5}{6}+\left(\dfrac{-1}{4}\right)=\dfrac{5}{12}+\dfrac{1}{2}=\dfrac{11}{12}\)
b)\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)=\dfrac{164}{9}-\left(\dfrac{81}{13}+\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)=\dfrac{164}{9}-\dfrac{3411}{247}+\dfrac{259}{52}=\dfrac{6425}{684}\)
c)\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right):2\dfrac{3}{5}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left[\dfrac{-7}{3}-\dfrac{13}{12}\cdot\dfrac{5}{13}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left(\dfrac{-11}{4}\right)\cdot\left(\dfrac{-3}{4}\right)=\dfrac{3}{16}\)
d)\(\dfrac{21}{33}:\dfrac{11}{5}-\dfrac{13}{33}:\dfrac{11}{5}+\dfrac{25}{33}:\dfrac{11}{5}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{21}{33}-\dfrac{13}{33}+\dfrac{25}{33}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=1\)
\(a)\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}:\left(\dfrac{-6}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\dfrac{-1}{4}\)
\(=\dfrac{7}{6}+\dfrac{-1}{4}\)
\(=\dfrac{11}{12}\)
\(b)17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)\)
\(=\dfrac{164}{9}-\left(\dfrac{81}{13}-\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)\)
\(=\dfrac{164}{9}-\dfrac{-333}{247}+\dfrac{259}{52}\)
\(=19,57040036+\dfrac{259}{52}\)
\(=24,55116959\)
Tính:
\(\left(1+\dfrac{7}{9}\right)\times\left(1+\dfrac{7}{20}\right)\times\left(1+\dfrac{7}{33}\right)\times\left(1+\dfrac{7}{48}\right)\times.......\times\left(1+\dfrac{7}{180}\right)\)
Thần đồng nào giỏi toán ! Giúp Mik với nha! Mik xin chân thành cảm ơn!
\(\left(1+\dfrac{7}{9}\right).\left(1+\dfrac{7}{20}\right).\left(1+\dfrac{7}{33}.\right)\left(1+\dfrac{7}{48}\right)...\left(1+\dfrac{7}{180}\right)\)
\(=\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}.\dfrac{55}{48}...\dfrac{7}{180}\)
\(=\dfrac{2.8}{1.9}.\dfrac{3.9}{2.10}.\dfrac{4.10}{3.11}.\dfrac{5.11}{4.12}...\dfrac{11.17}{10.18}\)
\(=\dfrac{\left(2.3.4.5...11\right).\left(8.9.10.11...17\right)}{\left(1.2.3.4...10\right).\left(9.10.11.12...18\right)}\)
\(=\dfrac{11.8}{1.18}=\dfrac{88}{18}=\dfrac{44}{9}\)
ta có ;
\(\left(1+\dfrac{7}{9}\right)\cdot\left(1+\dfrac{7}{20}\right).\left(1+\dfrac{7}{33}\right)...\left(1+\dfrac{1}{180}\right)\)
=\(\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}....\dfrac{187}{180}\)
=\(\dfrac{8.2}{9.1}.\dfrac{9.3}{10.2}.\dfrac{10.4}{3.11}.\dfrac{11.5}{4.12}....\dfrac{17.11}{18.10}\)
=\(\dfrac{8.9.10.11.12.13.14.15.16.17.2.3.4.5.6.7.8.9.10.11}{9.10.11.12.13.14.15.16.17.18.1.2.3.4.5.6.7.8.9.10}\)
=\(\dfrac{8.11}{18}=\dfrac{88}{18}=\dfrac{44}{9}\)
8) \(\dfrac{17}{-26}.\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}.\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}.\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\cdot\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{1-10}{6}-\dfrac{20}{3}\cdot\dfrac{8-5}{20}+\dfrac{2}{3}\cdot\dfrac{12-45}{10}\)
\(=\dfrac{-1}{2}\cdot\dfrac{-9}{6}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{66}{30}=\dfrac{-1}{4}-\dfrac{11}{5}=\dfrac{-5-44}{20}=-\dfrac{49}{20}\)
A = \(\dfrac{-19}{9}\times\dfrac{1}{2}-\dfrac{4}{11}\times\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)\)
B = \(\left(-\dfrac{15}{6}\right)\div\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}\times\dfrac{-11}{2}\)
C = \(\dfrac{3}{4}\times\left(-8\right)-\dfrac{1}{3}\times\dfrac{-7}{2}-\dfrac{5}{18}\)
\(A=\dfrac{-19}{9}.\dfrac{1}{2}-\dfrac{4}{11}.\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)=-\dfrac{23}{18}\)
\(B=\left(-\dfrac{15}{6}\right):\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}.\dfrac{-11}{2}=\dfrac{25}{4}\)
\(C=\dfrac{3}{4}.\left(-8\right)-\dfrac{1}{3}.\dfrac{-7}{2}-\dfrac{5}{18}=-\dfrac{46}{9}\)
\(A=\dfrac{-19}{18}+\dfrac{4}{9}-\dfrac{2}{3}=\dfrac{-19}{18}+\dfrac{8}{18}-\dfrac{12}{18}=\dfrac{-23}{18}\)
\(B=\dfrac{-5}{2}\cdot\dfrac{-2}{1}-\dfrac{7}{12}+\dfrac{11}{6}=\dfrac{5\cdot12-7+22}{12}=\dfrac{75}{12}=\dfrac{25}{4}\)
\(A=-5^{22}-\left\{-222-\left[-122-\left(100-5^{22}\right)+2022\right]\right\}\)
\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)
\(C=\dfrac{5.4^6.9^4-3^9.\left(-8\right)^4}{4.2^{13}.3^8+2.8^4.\left(-27\right)^3}\)
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
bài 3 thực hiện phép tính
a\(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
b\(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
c\(\left(\dfrac{13}{5}+\dfrac{7}{16}\right)+\left(\dfrac{-15}{16}+\dfrac{6}{15}\right)\) d \(\left(6-2\dfrac{4}{5}\right).3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\)
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
tính
a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)
b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)
c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)
e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)
f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)
h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}.\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}.\dfrac{3}{4}+\dfrac{5}{8}\)
\(=\dfrac{3}{8}+\dfrac{5}{8}\)
\(=1\)
a,\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
b,\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
c,\(23\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)-13\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)\)
d,1:\(\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
e,\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)