Cho pt x^2-(2m-1)x+m(m-1) = 0. Gọi x1,x2 là hai nghiệm của pt với x1<x2. Cm x1^2-2x2+3>=0
Cho pt x^2 - 2 (m-1)x+2m-3=0 gọi x1 x2 là 2 nghiệm của pt tìm hệ thức liên hệ giữa x1 x2 độc lập với m
Cho PT: x^2-2(m+1)x+2m-2=0 (x là ẩn số)a) CMR: PT luôn có 2 nghiệm phân biệt với mọi mb) Gọi 2 nghiệm của PT là x1, x2. Tính theo m giá trị của biểu thức:E=x1^2+2(m+1)x2+2m-2
Giúp mk câu b nha
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Cho pt x²+2x-8=0 gọi x1;x2 là hai nghiệm của pt. Không giải pt mà tính. M=x1(1–x2)+x2(1–x1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-8\end{matrix}\right.\)
\(M=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1+x_2-2x_1x_2\)
\(=-2-2.\left(-8\right)=14\)
cho pt x 2 -2(m-2)x+2m-5=0,m là tham số
1) chứng minh pt luôn có nghiêmj với mọi m
2) Gọi x1,x2 là hai nghiệm của pt .Tìm m để B =x1(1-x2)+x2(1-x1)<4
1) \(\Delta\)' = (-m+2)2 -2m+5 = 4-4m+m2-2m+5 = m2-6m+9 = (m-3)2 \(\ge\) 0
=> pt luôn có nghiệm với mọi m
2) ta có : B = x1(1-x2) + x2(1-x1) < 4
<=>B = x1 - x1x2 + x2 - x1x2 < 4
<=> B = (x1 + x2 ) - 2x1x2 < 4
theo định lí vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)
=> 2m+4 - 2(2m-5) < 4
=> -2m + 14 < 4
=> -2m < -10
=> m > 5
vậy để pt thỏa mãn B = x1(1-x2) + x2(1-x1) < 4 thì m > 5
Cho pt x2-–(2m–1)x+m(m–1)=0.gọi x1 x2 là nghiệm pt (x1 <x2) TM x12–2x2+3 lớn hơn hoặc bằng 0
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
x^2 - (2m-1)x+ m^2 =0
a) Tìm điều kiện của m để pt trên có nghiệm
b) Gọi x1,x2 là 2no pt trên.Tìm m để x1^2 +(2m-1)x2=8
cho pt x^2 -2mx+2m-1 =0
1) giải pt với m=1
2) tìm m để pt có 2 nghiệm x1 x2 thoả mãn :a)x1+x2=-1
b)x1^2 +x2^2=13
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\)
\(\Leftrightarrow-2m=-1\)
hay \(m=\dfrac{1}{2}\)
b) Ta có: \(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)
\(\Leftrightarrow4m^2-4m+2-13=0\)
\(\Leftrightarrow4m^2-4m+1-12=0\)
\(\Leftrightarrow\left(2m-1\right)^2=12\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)