Những câu hỏi liên quan
H24
Xem chi tiết
PD
Xem chi tiết
NM
29 tháng 10 2021 lúc 18:06

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)

Bình luận (0)
LD
Xem chi tiết
PT
Xem chi tiết
H24
19 tháng 8 2023 lúc 16:21

Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.

Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Bình luận (0)
H24
19 tháng 8 2023 lúc 16:21

Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.

Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Bình luận (0)
NT
19 tháng 8 2023 lúc 19:38

1:\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)

\(=AB\cdot AC\cdot\dfrac{1}{2}\cdot\dfrac{\sqrt{3}}{2}=AB\cdot AC\cdot\dfrac{\sqrt{3}}{4}\)

Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cos60=AB\cdot AC\)

=>\(BC^2=AB^2+AC^2-AB\cdot AC\)

2:

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AF=AB/AC

góc EAF chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB=cos60=1/2 và \(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>EF=BC/2 và \(S_{AEF}=\dfrac{1}{4}\cdot S_{ABC}\)

=>\(S_{AEF}=\dfrac{1}{4}\left(S_{AEF}+S_{BFEC}\right)\)

=>\(\dfrac{3}{4}\cdot S_{AEF}=\dfrac{1}{4}\cdot S_{BFEC}\)

=>\(S_{BFEC}=3\cdot S_{AFE}\)

Bình luận (0)
JC
Xem chi tiết
JC
Xem chi tiết
AD
Xem chi tiết
ND
Xem chi tiết
H24
22 tháng 5 2019 lúc 15:03

Đây là định lý hàm cos!

- Kẻ đường cao AH xuống BC

⇒CH=AC.cosC

Áp dụng định lí Pitago ta có:

AB2=AH2+BH2=AC2−CH2+(BC−CH)2

=AC2−CH2+BC2−2BC.CH+CH2

=AC2+BC2−2BC.CH

=AC2+BC2−2AC.BC.cosC (Điều phải chứng minh)

Bình luận (0)
PT
Xem chi tiết
DN
14 tháng 7 2016 lúc 14:48

đây là định lý cosin lớp 10

a2 = b2+c2 - 2bccosa

b2 = a2+c2 - 2accosb

c2 = a2+b2 -2abcosc

Bình luận (0)