Thách luôn:
2^x + 3 = y^2
Cho x,y là số thực sao cho x+y,x^2+y^2,x^4+y^4 là các số nguyên. CMR 2x^2y^2 và x^3+y^3 là các số nguyên
THÁCH THỨC THIÊN TÀI TOÁN HỌC :) :))
a) \(a^2-6a+10=\left(a^2-6a+9\right)+1=\left(a-3\right)^2+1\ge1\left(\forall a\right)\)
Dấu "=" xảy ra khi a = 3
b) \(4a^4-4a^3+a^2=a^2\left(4a^2-4a+1\right)=\left[a\left(2a-1\right)\right]^2\ge0\left(\forall a\right)\)
Dấu "=" xảy ra khi: \(\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)
c) \(x^3+y^3=\frac{1}{3}\left(3x^3+3y^3\right)\)
\(=\frac{1}{3}\left[\left(x^3+x^3+y^3\right)+\left(x^3+y^3+y^3\right)\right]\ge\frac{1}{3}\left(3x^2y+3xy^2\right)=x^2y+xy^2\) (Cauchy)
Dấu "=" xảy ra khi: x = y
A= 1 - 2 + 3 +4 + 5 - 6 ...+99 - 100
max khó luôn thách làm được
Á ĐÙUUUxem lại đầu bài ik hình như k có quy luật
CMR:x;y thuộc Q. Thì giá trị của biểu thức sau luôn luôn là số dương
M=3(x^2+1)+x^2y^2+y^2-2/(x+y)^2+5
Tìm các STN x,y,z khác 0 thỏa mãn điều kiện :x+y+z=xyz
thách ai giải được bài này:
cho:\(x+y+z=0\)
\(x^2+y^2+z^2=1\)thì \(x^5+y^5+z^5=\frac{5}{4}\left(2x^3-x\right)\)
100 : 2 + 100 x 2
Tl hộ mk rồi kp luôn nhé, mk tick cho! Hứa ko bùng
Mk thik đc kp vs nh pn dễ thg, hk giỏi!
KẾT BẠN CHO TA SỨC MẠNH VƯỢT QUA MỌI THỬ THÁCH CỦA TÓAN HỌC !!! ^-^
Bạn Jae Hwa kp vs mk, mk cx thik oppa Song
A=x(x-6)+10
Cm bt trên luôn luôn dương với mọi x
B=x^2-2x+9y^2-6y+3
Cm bt trên luôn luôn dương với mọi x,y
Câu 2:
a,x(x−6)+10x(x−6)+10
= x2−6x+10x2−6x+10
=(x−3)2+1>0(x−3)2+1>0\forall x
b, x2−2x+9y2−6y+3x2−2x+9y2−6y+3
= (x2−2x+1)+(9y2−6y+1)+1(x2−2x+1)+(9y2−6y+1)+1
=(x−1)2+(3y−1)2+1>0(x−1)2+(3y−1)2+1>0
kkkkkkkk cho mình nha
A=x^2-6x+10=x^2-6x+9+1=(x-3)^2+1
Co (x-3)^2>=0 1>0
=>A>0 voi moi x
Cho \(x-y=1\), chứng minh rằng giá trị dưới đây luôn là một hằng số:
\(P=x^2-xy-x+xy^2-y^3-y^2+5\)
\(Q=x^3-x^2y-x^2+xy^2-y^3-y^2+5x-5y-2015\)
P = x(x - y) - x + y2(x - y) - y2 + 5
P = x - x + y2 - y2 + 5
P = 5
Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015
Q = 5 - 2015
Q = -2010
x/2 = y/3 và x + y = -15
tìm x;y giúp luôn đi mà
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=-\dfrac{15}{5}=-3\)
=>x=-6; y=-9
`# \text {Ryo}`
`x/2 = y/3` và `x + y = -15`
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
`=> x/2 = y/3 = -3`
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=3\cdot\left(-3\right)=-9\end{matrix}\right.\)
Vậy, `x = -6; y = -9.`