Những câu hỏi liên quan
H24
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
GH
Xem chi tiết
KK
15 tháng 1 2017 lúc 12:47

\(A=\frac{\left(xy+2016z\right)\left(yz+2016x\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)

Thay \(x+y+z=2016\)

\(A=\frac{\left[xy+\left(x+y+z\right)z\right]\left[yz+\left(x+y+z\right)x\right]\left[zx+\left(x+y+z\right)y\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)

\(A=\frac{\left[xy+xz+yz+z^2\right]\left[yz+xy+xz+x^2\right]\left[zx+xy+yz+y^2\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left[x\left(y+z\right)+z\left(y+z\right)\right]\left[y\left(z+x\right)+x\left(z+x\right)\right]\left[x\left(z+y\right)+y\left(z+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left[\left(y+z\right)\left(x+z\right)\right]\left[\left(x+z\right)\left(x+y\right)\right]\left[\left(z+y\right)\left(x+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left(x+z\right)\left(x+z\right)\left(y+z\right)\left(y+z\right)\left(x+y\right)\left(x+y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left(x+z\right)^2\left(y+z\right)^2\left(x+y\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=1\)

Bình luận (0)
NT
Xem chi tiết
HH
Xem chi tiết
NL
30 tháng 9 2020 lúc 21:50

Đề bài sai, chiều đúng của BĐT phải là:

\(\frac{x^2}{y+2015z}+\frac{y^2}{z+2015x}+\frac{z^2}{x+2015y}\ge\frac{x+y+z}{2016}\)

Bình luận (0)
an
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết