Tìm x :
-1/2 . ( 1 - 3x ) - 1/2 = 3x - 1
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
Tìm x:
a)x.(5-2x)-2x.(1-x)=15
b)(3x+2)^2+(1+3x).(1-3x)=2
a)x.(5-2x)-2x.(1-x)=15
x [ 5 - 2x -2.(1-x) ] = 15
x ( 5 - 2x -2 + 2x ) =15
x . 3 =15
x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
9x2+12x+4+1-9x2=2
12x + 5 = 2
12x = -3
x = -1/4
a)\(\Leftrightarrow\)\(5x-2x^2-2x+2x^2=15\)
\(\Leftrightarrow\)\(3x=15\)
\(\Leftrightarrow\)\(x=5\)
b)\(\Leftrightarrow\)\(9x^2+12x+4+1-9x^2-2=0\)
\(\Leftrightarrow\)\(12x+3=0\)
\(\Leftrightarrow\)\(x=-0,25\)
Tìm x
a)x.(5-2x)-2x.(1-x)=15
b)(3x+2)2+(1+3x).(1-3x)=2
a) \(x\left(5-2x\right)-2x\left(1-x\right)=15\\ \Leftrightarrow5x-2x^2-2x+2x^2=15\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=5\)
Vậy x = 5 là nghiệm của pt.
b) \(\left(3x+2\right)^2+\left(1+3x\right)\left(1-3x\right)=2\\ \Leftrightarrow\left(9x^2+12x+4\right)+1-9x^2=2\\ \Leftrightarrow12x+5=2\\ \Leftrightarrow12x=-3\\ \Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=-\dfrac{1}{4}\) là nghiệm của pt.
a)x.(5-2x)-2x.(1-x)=15
x [ 5 - 2x -2.(1-x) ] = 15
x ( 5 - 2x -2 + 2x ) =15
x . 3 =15
x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
9x2+12x+4+1-9x2=2
12x + 5 = 2
12x = -3
x = -1/4
(3x^2-16x) ÷ (-3x) +x(x-4) =-2 (5x^3+20x^2-25x) ÷25x=(x-1) (x+2) (3x+1) ^3=3x+1 x^2-4x+4=9(x-2) Tìm x
d: ta có: \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)
Bài 2 Tìm x biết 1, (2x-2).(3x+1)-(3x-2).(2x-3)=5 2,(1-3x).(3x-5)-(2x-4)(2-3x)=x-6 3,(2x-1).(4x^2+2x+1)-(2x+1)(4x^2-2x+1)=5x+6 Giúp tớ với
cho biểu thức : A=( 3x+1/3x-1 - 3x-1/3x+1): 3x/ 6x-2.
a) Rút gọn A
b) Tìm x để A=1
c) Tìm x để A>0
Bài 2: (2 điểm) Tìm x, biết:
a) (3x + 4)2 – (3x – 1)(3x + 1) = 49
b) x2 – 4x + 4 = 9(x – 2)
c) x2 – 25 = 3x - 15
d) (x – 1)3 + 3(x + 1)2 = (x2 – 2x + 4)(x + 2)
a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
b) \(\Rightarrow x^2-13x+22=0\)
\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)
c) \(\Rightarrow x^2-3x-10=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
1/Tìm x,biết:
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
b)1+2+3+4+...+x=820
c)3(x+1)=9.27
d)x+2x+3x+...+99x+100x=15150
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
f)3x+3x+1+3x+2=351
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5555\)
\(\Rightarrow x+x+1+x+2+x+3+...+x+100=5555\)
\(\Rightarrow101\cdot x+5050=5555\)
\(\Rightarrow101\cdot x=5555-5050\)
\(\Rightarrow101\cdot x=505\)
\(\Rightarrow x=505:101\)
\(\Rightarrow x=5\)
b) \(1+2+3+4+...+x=820\)
\(\Rightarrow\left(x+1\right)\cdot\left[\left(x-1\right):1+1\right]:2=820\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+1-1\right):2=820\)
\(\Rightarrow\left(x+1\right)\cdot x:2=820\)
\(\Rightarrow x\cdot\left(x+1\right)=820\cdot2\)
\(\Rightarrow x\cdot\left(x+1\right)=1640\)
Ta thấy: \(40\cdot41=1640\)
Vậy: \(x=40\)
Tìm nghiệm : a) (2x-3).(2x+3) B)(x-4).(x-1).(x-2) C)2x(3x-1)-3x(5+2x) D)(3x-2).(3x+2)-4.(x-1)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(c,2x\left(3x-1\right)-3x\left(5+2x\right)=0\\ \Leftrightarrow6x^2-2x-15x-6x^2=0\\ \Leftrightarrow-17x=0\\ \Leftrightarrow x=0\\ d,\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\\ \Leftrightarrow9x^2-4-4x+4=0\\ \Leftrightarrow9x^2-4x=0\\ \Leftrightarrow x\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
Tìm x
a)3x(x-2)+2(2-x)=0
b)5x(3x-1)+x(3x-1)-2(3x-1)=0
a)\(3x\left(x-2\right)+2\left(2-x\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b)\(5x\left(3x-1\right)+x\left(3x-1\right)-2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x-2\right)=0\)
\(\Leftrightarrow2\left(3x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)^2=0\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
a/3x(x-2)+2(2-x)=0
=>(2-3x)(2-x)=0
=>\(\orbr{\begin{cases}2-3x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b/5x(3x-1)+x(3x-1)-2(3x-1)=0
=>(5x+x-2)(3x-1)=0
=>(6x-2)(3x-1)=0
=>\(\orbr{\begin{cases}6x-2=0\\3x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}6x=2\\3x=1\end{cases}}\)=>x=\(\frac{1}{3}\)