Những câu hỏi liên quan
NA
Xem chi tiết
NT
12 tháng 12 2017 lúc 16:18

3n + 2 chia hết cho n - 1

=> 3n -3 + 5 chia hết cho n - 1

=> 3 . ( n - 1 ) + 5 chia hết cho n - 1 mà 3.( n - 1 ) chia hết cho n - 1 => 5 chia hết cho n - 1 => n - 1 thuộc Ư ( 5 ) = { 1,5 }

=> n thuộc { 2 , 6 }

Vậy n thuộc { 2,6 }

Bình luận (0)
SL
18 tháng 12 2017 lúc 9:33

\(3n+2⋮n-1\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\) (vì 3(n-1) chia hết cho n-1)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{1;5\right\}\)

\(n-1=1\Rightarrow n=2\)

\(n-1=5\Rightarrow n=6\)

Vậy  \(n\in\left\{2;6\right\}\)

Bình luận (0)
NK
12 tháng 12 2017 lúc 18:16

bạn lấy câu hỏi này trong kì thi đúng không

Bình luận (0)
LW
Xem chi tiết
TD
19 tháng 12 2017 lúc 19:08

Ta có :

3n + 5 = 3n + 3 + 2 = 3 . ( n + 1 ) + 2

vì n + 1 \(⋮\)n + 1 \(\Rightarrow\)3 . ( n + 1 ) \(⋮\)n + 1 nên để 3n + 5 \(⋮\)n + 1 thì 2 \(⋮\)n + 1

\(\Rightarrow\)n + 1 \(\in\)Ư  ( 2 ) = { 1 ; 2 }

Lập bảng ta có :

n+112
n01

vì n thuộc N nên n \(\in\){ 0 ; 1 }

Vậy n \(\in\){ 0 ; 1 }

Bình luận (0)
H24
19 tháng 12 2017 lúc 19:05

x=0;1

Bình luận (0)
SL
19 tháng 12 2017 lúc 19:09

\(3n+5⋮n+1\Leftrightarrow3\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\) (vì 3(n+1) chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=2\Rightarrow n=1\)

Vậy \(n\in\left\{0;1\right\}\)

Bình luận (0)
PH
Xem chi tiết
HT
10 tháng 1 2021 lúc 9:19

3n+2 \(⋮\) n-1 

=> 3(n-1)+5 \(⋮\) n-1

mà 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1 

hay n-1 \(\in\) Ư(5)={1;5}

Ta có bảng sau 

n-115
n26

Vậy n \(\in\) {2;6}

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
OY
20 tháng 7 2021 lúc 10:06

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

Bình luận (1)
DX
20 tháng 7 2021 lúc 10:12

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

Bình luận (1)
PB
Xem chi tiết
CT
26 tháng 5 2018 lúc 15:47

Đáp án cần chọn là: C

Bình luận (0)
H24
24 tháng 12 2021 lúc 20:38

C bạn nhé n bằng  101

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
22 tháng 11 2018 lúc 15:48

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101

Bình luận (0)
TH
Xem chi tiết
OY
13 tháng 8 2021 lúc 14:56

A=3+32+33+...+399

3A=32+33+...+3100

3A-A=(32+33+...+3100)-(3+32+33+...+399)

2A=3100-3

2A+3=3100

⇒n=100

Bình luận (0)
BS
13 tháng 8 2021 lúc 15:11

Đây nè bạn, chúc bạn học tốt :))
A = 3 + 3+ 33+ ... + 399
3A = 3. (3 + 3+ 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100

Bình luận (2)
NT
Xem chi tiết
H24
25 tháng 12 2017 lúc 10:05

Ta có: 

\(3n+2⋮n-1\)

 \(\Rightarrow3n-3+3+2⋮n-1\)

\(\Rightarrow\left(3n-3\right)+5⋮n-1\)

\(\Rightarrow3.\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)( vì \(3.\left(n-1\right)⋮n-1\))

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow n\in\left\{2;6\right\}\)

Vậy: \(n\in\left\{2;6\right\}\)

Bình luận (0)
SL
21 tháng 1 2018 lúc 16:09

3n + 2 \(⋮\) n - 1 <=> 3(n - 1) + 5 \(⋮\) n - 1

=> 5 \(⋮\) n - 1 (vì 3(n - 1) \(⋮\) n - 1)

=> n - 1 ∈ Ư(5) = {1; 5}

n - 1 = 1 => n = 2

n - 1 = 5 => n = 6

Vậy n ∈ {2; 6}

Bình luận (0)
DC
Xem chi tiết
DC
17 tháng 10 2021 lúc 7:55

mn mn ơiii

Bình luận (0)
DC
17 tháng 10 2021 lúc 7:56

helllppppppppp

Bình luận (0)
NM
17 tháng 10 2021 lúc 8:07

\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)

Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)

\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)

Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)

Bình luận (1)
AT
Xem chi tiết
NT
6 tháng 11 2023 lúc 20:20

a: \(P=n^2+12n=n\left(n+12\right)\)

TH1: n=1

\(P=1\left(1+12\right)=1\cdot13=13\) là số nguyên tố

TH2: n>1

=>P=n(n+12) sẽ chia hết cho một số tự nhiên lớn hơn 1

=>P là hợp số

=>Loại

b: TH1: n=0

=>\(Q=3^0+6=1+6=7\)

=>Nhận

TH2: n>=1

=>\(Q=3^n+6=3\left(3^{n-1}+2\right)⋮3\)

=>Q là hợp số

=>Loại

Bình luận (0)