Những câu hỏi liên quan
LL
NH
7 tháng 11 2023 lúc 6:51

Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip

Bình luận (0)
ND
8 tháng 11 2023 lúc 10:52

#@₫!%&@^@₫@₫=_++_×%@%@&@@@@=@

Bình luận (0)
H24
Xem chi tiết
PL
Xem chi tiết
NT
29 tháng 11 2023 lúc 21:40

Bài 1:

a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)

=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(6S=-5^{100}+1\)

=>\(S=\dfrac{-5^{100}+1}{6}\)

b: S=1-5+52-53+...+598-599 là số nguyên

=>\(\dfrac{-5^{100}+1}{6}\in Z\)

=>\(-5^{100}+1⋮6\)

=>\(5^{100}-1⋮6\)

=>\(5^{100}\) chia 6 dư 1

Bình luận (0)
ND
Xem chi tiết
BD
29 tháng 6 2023 lúc 17:14

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

Bình luận (0)
ND
29 tháng 6 2023 lúc 16:45

e đang cần gấp, có ai đến giúp e ko?

Bình luận (0)
GD

\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)

Bình luận (0)
AB
Xem chi tiết
AH
11 tháng 9 2021 lúc 8:50

Lời giải:

$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$

$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$

$25C-C=(5^3+5^{102})-(5+1)$

$24C=5^{102}-119$

$C=\frac{5^{102}-119}{24}$

Bình luận (0)
NH
27 tháng 7 2023 lúc 16:11

    

 

Bình luận (0)
NU
Xem chi tiết
NH
30 tháng 7 2023 lúc 10:57

  A= 1 + 5 + 52 + 5 + ... + 5800 

5A=       5 + 5 + 53 + .... +5 800 + 5801  

5A - A = 5801  - 1 

4a = 5801 - 1 

    5801 - 1 +1 = 5n

⇒  5801 = 5n ⇒ n = 801

Bình luận (0)
AS
Xem chi tiết
ND
8 tháng 1 2018 lúc 20:06

Đây:Tài khoản Nguyenvanngoc

Mật khẩu tuxbox

Bình luận (0)
HN
Xem chi tiết
H9
3 tháng 9 2023 lúc 8:56

Ta có:

\(C=5+5^2+5^3+...+5^{2016}\)

\(C=5\cdot\left(1+5+5^2+...+5^{2015}\right)\)

\(\dfrac{C}{5}=1+5+5^2+...+5^{2015}\)

Mà: \(1+5+5^2+...+5^{2015}\) là 1 số nguyên nên

\(\dfrac{C}{5}\) là số nguyên: \(\Rightarrow C\) ⋮ 5

Nên C là hợp số

Bình luận (0)
ND
3 tháng 9 2023 lúc 8:56

1 số mà mũ bao nhiêu lần đi nữa thì được 1 số sẽ chia hết cho số ban đầu

\(Vì\) \(5;5^2;5^3;5^4;5^5;...5^{2016}\) đều chia hết cho 5

Các số hạng trong 1 tổng đều chia hết cho 1 số thì tổng đó chia hết cho số đã cho

\(\Rightarrow\)\(5+5^2+5^3+5^4+...+5^{2016}⋮5\) và là hợp số

Vậy C là hợp số

Bình luận (0)
BD
3 tháng 9 2023 lúc 8:57

\(C=5+5^2+5^3+.....+5^{2016}\\ C=5\left(1+5+5^2+....+5^{2015}\right)\\ =>C⋮1;C⋮5;C⋮5\left(1+5+5^2+....+5^{2015}\right)\)

=> C  là hợp số

 

 

Bình luận (0)
TU
Xem chi tiết
NH
26 tháng 8 2023 lúc 21:10

Bài 1:

   D     =      5  + 52 + 53+...+ 5100

5.D     =             52 + 53+...+5 100 + 5101

5D - D = 5101 - 5

4D       = 5101 - 5

  D      = \(\dfrac{5^{101}-5}{4}\)

Bình luận (0)
NH
26 tháng 8 2023 lúc 21:31

Bài 2:

So sánh 

a, 544 = (2.33)4 = 24.312  

    2112 = (3.7)12 = 312.712

Vì 24 < 712 nên 544 < 2112

b, 339 và 1121

    339   =   (313)3

   1121 = (117)3

     313 = (32)6.3 = 96.3 < 97 < 117 

Vậy 339  < 1121

    

 

Bình luận (0)
TU
Xem chi tiết
NT
26 tháng 8 2023 lúc 22:14

1) \(D=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)

\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)

\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)

2)

a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)

b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)

\(\Rightarrow3^{39}< 11^{21}\)

c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)

\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)

\(201^{60}>398^{45}\)

Bình luận (0)

Công ty cổ phần BINGGROUP © 2014 - 2025
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn